Project description:The total RNA were extracted from tissues of roots from several plants of Panax notoginseng under CK and Cd stress treatment by using TRIzol reagent (Invitrogen) according to the manufacturer's instructions. The purified PCR product was sequenced using Illumina Genome Analyzer II. The qualified reads were used to study of Panax notoginseng transcriptome under CK and Cd stress treatment.
Project description:Methods: Panax notoginseng was used to treat MCAO model rats, and the differentially expressed genes between Panax notoginseng group and model group were identified by RNA SEQ, and the possible mechanism of Panax notoginseng in regulating ischemic stroke was analyzed
Project description:Nitrogen is one of the essential elements for plant growth. NH4+ and NO3- are two major forms of absorbing element N for higher plants. In this study we found that the growth of Panax notoginseng is inhibited when only adding ammonium nitrogen fertilizer, and adding nitrate fertilizer can alleviate the toxicity caused by ammonium. We use RNA-seq to identify genes that are related to the alleviated phenotypes after introducing NO3- to Panax notoginseng roots under NH4+ stresses. Twelve RNA-seq profiles in four sample groups, i.e., control, samples treated with NH4+, samples treated with NO3- only, and treated with both NH4+ and NO3- were obtained and analyzed to identify deregulated genes in samples with different treatments. ACLA-3 gene is downregulated in NH4+ treated samples, but is upregulated in samples treated with NO3- and with both NH4+ and NO3-, which is further validated in another set of samples using qRT-PCR. Our results suggest that unbalanced metabolism of nitrogen and nitrogen is the main cause of ammonium poisoning in roots of Panax notoginseng, and NO3- may significantly upregulate the activity of ACLA-3 which subsequently enhances the citrate cycle and many other metabolic pathways in Panax notoginseng root. These potentially increase the integrity of the Panax notoginseng roots. Our results suggest that introducing NO3- fertilizer is an effective means to prevent the occurrence of toxic ammonium in Panax notoginseng root.
Project description:Adjusting planting density is a common agricultural practice used to achieve maximum yields. However, whether the quality of medicinal herbs can be improved by implementing appropriate planting densities is still uncertain. The medicinal crop <i>Panax notoginseng</i> was used to analyze the effects of planting density on growth and ginsenoside accumulation, and the possible mechanisms of these effects were revealed through metabonomics. The results showed that <i>P. notoginseng</i> achieved high ginsenoside accumulation at high planting densities (8 × 8 and 10 × 10 cm), while simultaneously achieved high biomass and ginsenoside accumulation at moderate planting density of 15 × 15 cm. At the moderate planting density, the primary metabolism (starch and sucrose metabolism) and secondary metabolism (the biosynthesis of phytohormone IAA and ginsenoside) of the plants were significantly enhanced. However, the strong intraspecific competition at the high planting densities resulted in stress as well as the accumulation of phytohormones (SA and JA), antioxidants (gentiobiose, oxalic acid, dehydroascorbic acid) and other stress resistance-related metabolites. Interestingly, the dry biomass and ginsenoside content were significantly lower at low densities (20 × 20 and 30 × 30 cm) with low intraspecific competition, which disturbed normal carbohydrate metabolism by upregulating galactose metabolism. In summary, an appropriate planting density was benefit for the growth and accumulation of ginsenosides in <i>P. notoginseng</i> by balancing primary metabolism and secondary metabolism.
Project description:Bursaphelenchus xylophilus (pinewood nematode, PWN) is a causal agent of pine wilt disease and results in economic and environmental losses in pine forests. The establishment of systemic acquired resistance (SAR) provides positive capacities to control PWN. We selected two SAR elicitors, acibenzolar-S-methyl (ASM) and methyl salicylic acid (MeSA), which effectively inhibited disease symptoms on PWN-infected pine trees. To understand dynamic interactions between pine host and PWN under SAR state, we characterized in vivo transcriptomes of pine trees infected by B. xylophilus according to the ASM and MeSA treatment. After distilled water treatment, pine trees infected by B. xylophilus was used as a negative control.
2020-11-02 | GSE154134 | GEO
Project description:Endophytic bacteria in Panax notoginseng under high temperature analysed
Project description:Xuesaitong injection (XST), a standardized patent Chinese medicine of Panax notoginseng roots (Sanqi in Chinese), has long been used for effective prevention and treatment of stroke in China. However, the mechanisms underlying its effects against ischemic stroke are still poorly understood. In this study, we focused on the polypharmacology of XST against ischemic stroke with a XST-regulated stroke network analysis. Male Sprague Dawley rat model of MCAO and reperfusion were administered XST for 7 days while the control group was not treated.
Project description:Bark beetles (Coleoptera: Scolytinae) are pests of many forests around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant pest of western North American pine forests. The MPB is able to overcome the defences of pine trees through pheromone-assisted aggregation that results in a mass attack of host trees. These pheromones, both male and female produced, are believed to be biosynthesized in the midgut and/or fat body of these insects. We have used transcriptomics (RNA-seq) to identify transcripts differentially expressed between sexes and between tissues, with juvenile hormone III treatment, which is known to induce pheromone biosynthesis.
Project description:Xuesaitong injection (XST), a standardized patent Chinese medicine of Panax notoginseng roots (Sanqi in Chinese), has long been used for effective prevention and treatment of stroke in China. However, the mechanisms underlying its effects against ischemic stroke are still poorly understood. In this study, we focused on the polypharmacology of XST against ischemic stroke with a XST-regulated stroke network analysis. Male Sprague Dawley rat model of MCAO and reperfusion were administered XST for 7 days while the control group was not treated. Three conditions were compared with three replicates each. These are: (1) sham; (2) model (3) XST treatment. Whole genome microarray analysis was performed using Affymetrix rat Genome 230 2.0 chips.