Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:We provide raw gene sequences of 174 flowering time regulatory genes and gene othologs across a large barley population (895 barley lines) selected from a collection of landrace, cultivated barley, and research varieties of diverse origin. This set represents the whole variety of cultivated barley lifeforms, namely two- and six-row genotypes with winter, spring, and facultative growth habits. We applied a target capture method based on in-solution hybridization using the myBaits® technology (Arbor Biosciences, Ann Arbour, MI, USA) which is based on in-solution biotinylated RNA probes. Baits were designed for flowering time regulatory genes and gene othologs, and used for production of 80mer capture oligonucleotides for hybridization. Genomic DNA was extracted from leaves of a single two-week old barley plant per variety using the cetyl-trimethyl-ammonium bromide (CTAB) method. Physical shearing of genomic DNA was performed with an average size of 275 bp. Library preparation was conducted with KAPA Hyper Prep Kit (KAPA Biosystems, Wilmington, MA). Hybridization of customised RNA baits with capture pools was performed at 65°C for 24 hours. Each pooled sequence capture library was sequenced on an Illumina HiSeq3000 instrument using three lanes to generate paired-end reads per sample. Genome sequencing was conducted at AgriBio, (Centre for AgriBioscience, Bundoora, VIC, Australia).
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed
Project description:Whole exome sequencing of 5 HCLc tumor-germline pairs. Genomic DNA from HCLc tumor cells and T-cells for germline was used. Whole exome enrichment was performed with either Agilent SureSelect (50Mb, samples S3G/T, S5G/T, S9G/T) or Roche Nimblegen (44.1Mb, samples S4G/T and S6G/T). The resulting exome libraries were sequenced on the Illumina HiSeq platform with paired-end 100bp reads to an average depth of 120-134x. Bam files were generated using NovoalignMPI (v3.0) to align the raw fastq files to the reference genome sequence (hg19) and picard tools (v1.34) to flag duplicate reads (optical or pcr), unmapped reads, reads mapping to more than one location, and reads failing vendor QC.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:This dataset contains target capture sequence data from 255 samples, including 154 tumors and 101 normal samples. All the experiments were performed on Illumina HiSeq 2000 platform with raw reads stored in fastq format.