Project description:Short title: Coral Meta-Transcriptomics Reveal Pollutant Stress Background: Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). Results: RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5). Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral / zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (ie. cytochrome P450 and UDP glucuronosyltransferase 2) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production including glycolysis and electron-transport pathways was observed in the coral animal. Conclusions: Transcriptional network analysis for central energy metabolism demonstrated highly correlated responses to RDX among the coral animal and zooxanthellae indicative of potential compensatory responses to lost photosynthetic potential within the holobiont. These observations underscore the potential for complex integrated responses to RDX exposure among species comprising the coral holobiont and highlight the need to understand holobiont-species interactions to accurately assess pollutant impacts.
Project description:Purpose: There is a dearth of knowledge regarding the molecular pathology of growth anomaly in corals. We investigated the gene expression profile of Montipora capitata metatranscriptomes from healthy and diseased (growth anomaly) coral colonies to elucidate differentially expressed genes. Methods: mRNA profiles of coral tissue (including symbionts) were generated from three different tissue states: healthy, affected and unaffected. Healthy tissue was collected from coral colonies not affected by growth anomaly. Affected tissue was collected from coral growth anomaly lesions. Unaffected tissue was collected from coral colonies affected by growth anomaly.
Project description:The surprising observation that virtually the entire human genome is transcribed means we know very little about the function of many emerging classes of RNAs, except their astounding diversity. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their ability to classify classes of non-coding RNAs (ncRNAs). To address this, we developed CoRAL, a machine learning-based approach for classification of RNA molecules. CoRAL uses biologically interpretable features including fragment length, cleavage specificity, and antisense transcription to distinguish between different ncRNA classes. We evaluated CoRAL using genome-wide small RNA sequencing (smRNA-seq) datasets from two human tissue types (brain and skin [GSE31037]), and were able to classify six different types of RNA transcripts with 79~80% accuracy in cross-validation experiments, and with 71~73% accuracy when CoRAL uses one tissue type for training and the other as validation. Analysis by CoRAL revealed that long intergenic ncRNAs, small cytoplasmic RNAs, and small nuclear RNAs show more tissue specificity, while microRNAs, small nucleolar, and transposon-derived RNAs are highly discernible and consistent across the two tissue types. The ability to consistently annotate loci across tissue types demonstrates the potential of CoRAL to characterize ncRNAs using smRNA-seq data in less characterized organisms.
Project description:Purpose: Corals are major sources of dimethylsulphoniopropionate (DMSP), a compound that plays a central role in the global sulphur cycle. While DMSP biosynthesis pathways have been investigated in plants and algae, the molecular basis for its production by corals is unknown. Given its potential role as an osmolyte, the effect of salinity stress on levels of DMSP was investigated in both adults and juveniles (lacking photosynthetic symbionts) of the coral Acropora millepora. This study used transcriptomic data to analyse the effects of salinity over the coral A. millepora and to identify coral genes likely to be involved in DMSP biosynthesis. Methods: Adults coral transcriptomic libraries were constructed from samples exposed during 1 and 24 hours of salinity treatment (25 PSU) and control (35 PSU) conditions (n=5 per condition). Juveniles coral transcriptomic libraries were constructed from samples exposed to 24 and 48 hours of salinity treatment (28 PSU) and control (35 PSU) conditions (n=6 per condition). All libraries were sequenced by 100 bp paired-end in a HiSeq 2000. Reads were mapped onto the Acropora millepora genome using TopHat2 to produce a count data gene expression matrix for subsequent gene expression analysis using DESeq2 package. Results: In adult coral samples, 5.5 - 10.2 million RNAseq reads were obtained for each treatment sampling time while 3.4 - 8.8 million reads were obtained for each juvenile coral sample. The count matrix of the 26,622 A. millepora gene predictions were generated using htseq-count workflow. BlastP analysis of the A. millepora gene predictions led to the identification of coral members of gene families implicated in DMSP biosynthesis in other organisms, while RNA-seq data was used to identify the differentially expressed ones in response to hyposaline stress and on this basis were considered to be candidates for roles in DMSP biosynthesis in corals. Conclusions: Hyposaline stress increased DMSP production in both adults and aposymbiotic juvenile corals, and transcriptomic analyses highlighted the potential involvement of specific candidate genes in the production of DMSP via an alga-like pathway. The biochemistry of DMSP production is not well established for any eukaryotic system and, as the first animals in which it has been demonstrated, this is particularly true in the case of corals. Our RNA-seq results enabled the identification of candidates for roles in DMSP biosynthesis in corals but, given its critical roles in diverse biological processes, a thorough investigation of the molecular mechanisms leading to its production by corals is required.
2017-08-20 | GSE96916 | GEO
Project description:Assessing the coral microbiome at the scale of tissue-specific habitats within the coral meta-organism
Project description:Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this needs to be taken into account when using mitochondrial markers for scleractinian phylogenies.
Project description:Coral disease is one of the major causes of reef degradation and therefore of concern to management and conservation efforts. Dark Spot Syndrome (DSS) was described in the early 1990’s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease, since they can also be caused by physical injury in some species. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two geographic locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies with normal pigmentation and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip™ G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, however the amplicon pools were overwhelmed by coral 18S rRNA genes from S. siderea. Unlike a similar study on a white-plague-like disease, S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the healthy scleractinian coral S. siderea. 17 samples, coral tissue punches from healthy and also from dark-spot-affected Siderastrea Siderea coral in the Virgin Islands and the Dry Tortugas National Parks was collected for comparison of associated bacterial communities
Project description:The surprising observation that virtually the entire human genome is transcribed means we know very little about the function of many emerging classes of RNAs, except their astounding diversity. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their ability to classify classes of non-coding RNAs (ncRNAs). To address this, we developed CoRAL, a machine learning-based approach for classification of RNA molecules. CoRAL uses biologically interpretable features including fragment length, cleavage specificity, and antisense transcription to distinguish between different ncRNA classes. We evaluated CoRAL using genome-wide small RNA sequencing (smRNA-seq) datasets from two human tissue types (brain and skin [GSE31037]), and were able to classify six different types of RNA transcripts with 79~80% accuracy in cross-validation experiments, and with 71~73% accuracy when CoRAL uses one tissue type for training and the other as validation. Analysis by CoRAL revealed that long intergenic ncRNAs, small cytoplasmic RNAs, and small nuclear RNAs show more tissue specificity, while microRNAs, small nucleolar, and transposon-derived RNAs are highly discernible and consistent across the two tissue types. The ability to consistently annotate loci across tissue types demonstrates the potential of CoRAL to characterize ncRNAs using smRNA-seq data in less characterized organisms. Four samples were sequenced, each one coming from frozen brain tissue (frontal cortex) of a deceased female human patient with no remarkable pathology.