Project description:Gene expression analyses were carried out to identify genes regulated by 17-beta estradiol (E2) and Hydroxytamoxifen (OHT) through GPR30 in SKBR3 cells, a breast cancer cell-line which expresses GPR30 but lacks Estrogen Receptor alpha or beta. Keywords: Gene expression analysis, Non-genomic signaling in breast cancer cells.
Project description:Gene expression analyses were carried out to identify genes regulated by 17-beta estradiol (E2) and Hydroxytamoxifen (OHT) through GPR30 in SKBR3 cells, a breast cancer cell-line which expresses GPR30 but lacks Estrogen Receptor alpha or beta. Keywords: Gene expression analysis, Non-genomic signaling in breast cancer cells. Gene expression analyses were done for control transfected SKBR3 cells: 1) Uninduced, 2) Induced with 10 microM OHT, 3) Induced with 1 microM E2 and 4) GPR30-antisense transfected cells induced with 10 microM OHT. The cells were induced for 1h and all the samples were collected in triplicates.
Project description:We have previously demonstrated that endoxifen is the most important tamoxifen metabolite responsible for eliciting the anti-estrogenic effects of this drug in breast cancer cells expressing estrogen receptor-alpha. However, the relevance of estrogen receptor-beta in mediating endoxifen action has yet to be explored. Therefore, the goals of this study were to determine the differences in the global gene expression profiles elicited by estradiol treatment and endoxifen between parental MCF7 breast cancer cells (expressing estrogen receptor alpha only) and MCF7 cells stably expressing estrogen receptor beta. Total RNA was isolated from parental or estrogen-receptor beta expressing MCF7 cells following 24 hour treatments with either ethanol vehicle, 1nM 17-beta-estradiol or 1nM estradiol plus 40nM endoxifen. All studies were conducted in biological replicates of 2.
Project description:We have previously demonstrated that endoxifen is the most important tamoxifen metabolite responsible for eliciting the anti-estrogenic effects of this drug in breast cancer cells expressing estrogen receptor-alpha. However, the relevance of estrogen receptor-beta in mediating endoxifen action has yet to be explored. Therefore, the goals of this study were to determine the differences in the global gene expression profiles elicited by estradiol treatment and endoxifen between parental MCF7 breast cancer cells (expressing estrogen receptor alpha only) and MCF7 cells stably expressing estrogen receptor beta.
Project description:The goal of this work was to identify all estrogen receptor beta target genes using RNA sequencing in MDA-MB-468 triple negative breast cancer cells engineered with inducible expression of full length estrogen receptor beta.
Project description:Triple negative breast cancer (TNBC) is a highly heterogeneous disease representing the most aggressive breast cancer (BC) subtype. Lack of Estrogen Receptor alpha (ERα), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu) expression makes TNBC immune to common therapies, significantly limiting the treatment options and suggesting the need to identify novel therapeutic targets. It was previously reported that Estrogen Receptor beta (ERβ) is expressed in a fraction of TNBC patients, where its presence correlates with improved patient outcome. Recently, we demonstrated an oncosuppressive ERβ effect in TNBC cell models expressing exogenous ERβ. On the other hand, it was shown that ERβ is involved in miRNA-mediated gene regulation in hormone-responsive BC cells, suggesting similar effect also in TNBC. To verify this hypothesis, we performed small non-coding RNA (sncRNA) sequencing on three engineered cell lines belonging to different TNBC molecular subtypes. ERβ-specific changes of sncRNA profile revealed that the major part of deregulated molecules are subtype specific, with only few commonly regulated ones. In order to validate the obtained results, we performed sncRNA profiling of 12 ERβ positive and 32 ERβ negative TNBC tissues, whose receptor status was assessed by immunohistochemistry in our previous research. Also here, ERβ-specific group of deregulated sncRNAs was identified. Interestingly, comparison of obtained in vitro and in vivo results revealed 2 differentially expressed miRNAs, displaying the same behavior in all three analyzed cell lines and tissues. In concordance with our previous results, IPA signaling pathway analysis performed on genes targeted by deregulated miRNAs highlighted downregulation of cholesterol biosynthesis pathway and upregulation of several signaling processes. Taken together, these findings suggest that ERβ is able to exert its oncosuppressive role in TNBC through miRNA-mediated regulation of gene expression.
Project description:Breast cancer (BC) is the second most common type of cancer in women and one of the leading causes of cancer-related deaths worldwide. BC classification is based on the detection of three main histological markers: estrogen receptor alpha (ERα), progesterone receptor (PR) and the amplification of epidermal growth factor receptor 2 (HER2/neu). A specific BC subtype, named triple-negative BC (TNBC), lacks the aforementioned markers but a fraction of them express the estrogen receptor beta (ERβ). To investigate the functional role of ERβ in these tumors, interaction proteomics coupled to mass spectrometry (MS) was applied to deeply characterize the nuclear interactors partners in MDA-MD-468 and HCC1806 TNBC cells.
Project description:Tamoxifen (Nolvadex) is one of the most widely used and effective therapeutic agent for breast cancer. It benefits nearly 75% of patients with ER-positive breast cancer that receive this drug. Its effectiveness is mainly attributed to its capacity to function as an estrogen receptor (ER) antagonist, blocking estrogen binding sites on the receptor, and inhibiting the proliferative action of the receptor-hormone complex. Although, tamoxifen can induce apoptosis in breast cancer cells via upregulation of pro-apoptotic factors, it can also promote uterine hyperplasia in some women. Thus, tamoxifen as a multi-functional drug could have different effects on cells based on the utilization of effective concentrations or availability of specific co-factors. Evidence that tamoxifen functions as a GPR30 (G-Protein Coupled Receptor 30) agonist activating adenylyl cyclase and EGFR (Epidermal Growth Factor Receptor) intracellular signaling networks, provides yet another means of explaining the multi-functionality of tamoxifen. Here ordinary differential equation (ODE) modeling, RNA sequencing and real time qPCR analysis were utilized to establish the necessary data for gene network mapping of tamoxifen-stimulated MCF-7 cells, which express the endogenous ER and GPR30. The gene set enrichment analysis and pathway analysis approaches were used to categorize transcriptionally upregulated genes in biological processes. Of the 2,713 genes that were significantly upregulated following a 48 h incubation with 250 μM tamoxifen, most were categorized as either growth-related or pro-apoptotic intermediates that fit into the Tp53 and/or MAPK signaling pathways. Collectively, our results display that the effects of tamoxifen on the breast cancer MCF-7 cell line are mediated by the activation of important signaling pathways including Tp53 and MAPKs to induce apoptosis.