Project description:The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19− PC subsets, respectively. IgA2+ PCs were often clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) increased newly formed and actively proliferating IgA1+ plasmablasts, depleted long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial Akkermansia muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes of both frequency and reactivity in IBD.
2024-10-17 | GSE268929 | GEO
Project description:The gut microbiota of hypertension long-lived elderly
Project description:To decipher the molecular mechanisms underlying_variable_vaccine responses, T- and B-cell responses to_vaccination with a life zoster_vaccine were examined in individuals of different ages. Diminished generation of long-lived memory T cells in older individuals was mainly caused by increased T cell loss after the peak response while the expansion of antigen-specific T cells was not affected by age. Gene expression in activated CD4 T cells co-expressing HLA-DR and CD38 at the time of the peak response identified gene modules related to cell cycle regulation and DNA repair that correlated with the contraction phase of the T cell response and consequently the generation of long-lived memory cells.
Project description:Intestinal microorganisms impact on health maintaining gut homeostasis and shaping the host immunity, while gut dysbiosis associates with many conditions including autism, a complex neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates with symptom severity and is characterized by a reduced bacterial variability and a diminished beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that, in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut micro-biota cross-talk. We investigated possible interactions among intestinal microbes and between them and host transcriptional modulators in autism. To this purpose, we analysed, by “omics” technologies, faecal microbiome, mycobiome and small non-coding-RNAs (particularly miRNAs and piRNAs) of children with autism and neurotypical development. Patients displayed gut dysbiosis, related to a reduction of healthy gut micro- and mycobiota, and up-regulated tran-scriptional modulators. The targets of dysregulated non-coding-RNAs are involved in intestinal permeability, inflammation and autism. Furthermore, microbial families, underrepresented in patients, participate to the production of human essential metabolites negatively influencing the health condition. Here, we propose a novel approach to analyse faeces as a whole and, for the first time, we detected miRNAs and piRNAs in faecal samples of patients with autism.
Project description:This project analyzes peripheral blood profiles of patients of age 90 or above and aims to detect profiles that distinguish them from younger controls. n = 55 normal controls and n = 15 long lived individuals have been screened for the complete miRNA repertoire. Please note that each miRNA has been measured in seven replicates and the median of the replica has been computed.
Project description:Metagenomic and targeted meta-proteomics were used to investigate the mycobiome profile of the infant gut to identify proteins involved during atopic dermatitis manifestation in a Thai population-based birth cohort.
Project description:To understand how reduced insulin/IGF-1 signaling extends Drosophila lifespan through its downstream transcription factor dFOXO. We conducted ChIP analysis with a dFOXO antibody followed by Illumina high-throughput sequencing from chico heterozygous mutants, which are long-lived and normal sized, and from adult flies with ablated insulin producing cells (IPCs), which are also long-lived. dFOXO bound at promoters of 273 genes common among these genotypes, thus potentially enriching for shared factors in control of aging. Two replicates were sequenced from chico heterozygous mutants and IPC ablated flies.