Project description:Myotonic Dystrophy (DM1), a common neuromuscular disease, has been shown to have detrimental effects on the livers of patients. To study whether DM1 is directly altering liver function or whether these effects are secondary to DM1 induced functional changes in other tissues, we sequenced the transcriptomes of hepatocytes from liver-specific and whole-body murine models of DM1. We found substantial transcriptomic alteration in the liver-specific model, along with distinguishable physiological changes in the livers of both the liver-specific and whole-body models. This data serves as a survey of transcriptomic alterations in occurring in the livers of DM1 patients.
Project description:Myotonic dystrophy (DM) is the most common autosomal dominant muscular dystrophy and encompasses both skeletal muscle and cardiac complications. Myotonic dystrophy is nucleotide repeat expansion disorder in which type 1 (DM1) is due to a trinucleotide repeat expansion on chromosome 19 and type 2 (DM2) arises from a tetranucleotide repeat expansion on chromosome 3. Developing representative models of myotonic dystrophy in animals has been challenging due to instability of nucleotide repeat expansions, especially for DM2 which is characterized by nucleotide repeat expansions often greater than 5000 copies. To investigate mechanisms of human DM, we generated cellular models of DM1 and DM2. We used regulated MyoD expression to reprogram urine-derived cells into myotubes. In this cell model, we found impaired dystrophin expression, MBNL foci, and aberrant splicing in DM1 but not in DM2 cells. We generated induced pluripotent stem cells (iPSC) from healthy controls, DM1 and DM2 subjects and differentiated these into cardiomyocytes. DM1 and DM2 cells displayed an increase in RNA foci concomitant with cellular differentiation. IPSC-derived cardiomyocytes from DM1 but not DM2 had aberrant splicing and MBNL sequestration. High resolution imaging revealed tight association between MBNL clusters and RNA FISH foci in DM1. Ca2+ transients differed between DM1 and DM2 IPSC-derived cardiomyocytes and from healthy control cells. RNA-sequencing from DM1 and DM2 iPSC-derived cardiomyocytes both altered gene expression as well as distinct splicing patterns as differential between DM1 and DM2. Together these data support that DM1 and DM2, despite some shared clinical and molecular features, have distinct pathological signatures.
Project description:Myotonic dystrophy type 1 (DM1) is a dominantly inherited disease that affects multiple organ systems. Cardiac dysfunction is the second leading cause of death in DM1. We quantified gene expression in heart tissue from a heart-specific DM1 mouse model (EpA960/MCM) which inducibly expresses human DMPK exon 15 containing 960 CUG expanded repeats and that reproduced Celf1 up regulation. To assess if, in addition to splicing and miRNA defects, CUGexp RNA also perturbed the steady state mRNA levels of genes, we carried out a microarray study on wildtype E14, adult, MCM controls and DM1 mouse hearts. As anticipated we noted a large number of genes to be developmentally regulated in wildtype hearts, however, within 72h of induction of CUGexp RNA there appeared to be a coordinate adult-to-embryonic shift in steady state levels of many genes. We identified transcripts over-expressed or under-expressed in hearts of wildtype adult mice, wildtype embryonic day 14 (E14), and DM1 mice induced to express CUGexp RNA for 72h and 1wk, when compared to MCM controls. Multiple group comparison.
Project description:Distinct RNA-mediated impacts on alternative splicing and extracellular matrix gene expression in a mouse model of myotonic dystrophy. Myotonic dystrophy (DM1) is associated with expression of expanded CTG DNA repeats as RNA (CUGexp RNA). To test whether CUGexp RNA creates a global splicing defect, we compared skeletal muscle of two mouse DM1 models, one expressing a CTGexp transgene, and another homozygous for a defective Mbnl1 gene. Strong correlation in splicing changes for ~100 new Mbnl1-regulated exons indicates loss of Mbnl1 explains >80% of the splicing pathology due to CUGexp RNA. In contrast, only about half of mRNA level changes can be attributed to loss of Mbnl1, indicating CUGexp RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix (ECM) proteins. We propose that CUGexp RNA causes two separate effects: loss of Mbnl1 function, disrupting splicing, and loss of another function that disrupts ECM mRNA regulation, possibly mediated by MBNL2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies. MBNL1 knockout and HSALR mice on FVB background. To test whether CUGexp RNA creates a global splicing defect, we compared skeletal muscle of two mouse DM1 models, one expressing a CTGexp transgene, and another homozygous for a defective Mbnl1 gene. These samples were compared to the skeletal muscle of a wildtype mouse.
Project description:Myotonic dystrophy type 1 (DM1) is a dominantly inherited disease that affects multiple organ systems. Cardiac dysfunction is the second leading cause of death in DM1. We quantified gene expression in heart tissue from a heart-specific DM1 mouse model (EpA960/MCM) which inducibly expresses human DMPK exon 15 containing 960 CUG expanded repeats and that reproduced Celf1 up regulation. To assess if, in addition to splicing and miRNA defects, CUGexp RNA also perturbed the steady state mRNA levels of genes, we carried out a microarray study on wildtype E14, adult, MCM controls and DM1 mouse hearts. As anticipated we noted a large number of genes to be developmentally regulated in wildtype hearts, however, within 72h of induction of CUGexp RNA there appeared to be a coordinate adult-to-embryonic shift in steady state levels of many genes.
Project description:Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy caused by expansion of a CTG repeat microsatellite within DMPK. In 10-20% of individuals with DM1, symptomatic onset begins at birth; these patients are classified as congenital myotonic dystrophy (CDM). While dysregulation of RNA metabolism, specifically alternative splicing, has been linked to disease pathology in adult-onset DM1, little is known about the mechanism of CDM. Biopsies from individuals (CDM), age range 0.04-16 years, were subjected to total RNA-seq to quantify the transcriptomic dysregulation throughout pediatric development. To achieve this, they were compared against age matched pediatric controls which revealed a triphasic pattern of dysregulation not before seen observed in CDM. CDM samples were also compared to adult-onset (DM1) individuals which showcased a shared disease signature to seen in all individuals with myotonic dystrophy irrespective of disease age of onset.
Project description:Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy and is caused by an repeat expansion [r(CUG)exp] located in the 3' untranslated region of the DMPK gene. Symptoms include skeletal and cardiac muscle dysfunction and fibrosis. In DM1, there is a lack of established biomarkers in routine clinical practice. Thus, we aimed to identify a blood biomarker with relevance for DM1-pathophysiology and clinical presentation.
Project description:In this Study, we used RNA-targeting Cas9 (RCas9) to reverse characteristic Myotonic Dystrophy (DM1) cellular phenotypes such as elimination of RNA foci, MBNL relocalization, and reversal of transcriptome-wide splicing in a mouse model of myotonic Dystrophy (DM1). Furthermore we show that gene expression is not altered with RCas9 treatment in WT mice with or without treatment with immunosuppression
Project description:Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTGexp) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTGexp mutations and RNA mis-splicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1.
Project description:Distinct RNA-mediated impacts on alternative splicing and extracellular matrix gene expression in a mouse model of myotonic dystrophy. Myotonic dystrophy (DM1) is associated with expression of expanded CTG DNA repeats as RNA (CUGexp RNA). To test whether CUGexp RNA creates a global splicing defect, we compared skeletal muscle of two mouse DM1 models, one expressing a CTGexp transgene, and another homozygous for a defective Mbnl1 gene. Strong correlation in splicing changes for ~100 new Mbnl1-regulated exons indicates loss of Mbnl1 explains >80% of the splicing pathology due to CUGexp RNA. In contrast, only about half of mRNA level changes can be attributed to loss of Mbnl1, indicating CUGexp RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix (ECM) proteins. We propose that CUGexp RNA causes two separate effects: loss of Mbnl1 function, disrupting splicing, and loss of another function that disrupts ECM mRNA regulation, possibly mediated by MBNL2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies.