Project description:In order to understand the role of phloems of apple dwarfing rootstocks,and investigated the expression differences of dwarfing and vigorous apple stocks in the bud break stage, The phloem tissue at bud break stage(0 DABB(days after buds break) of three apple rootstocks including A1d(a partial GA insensitive mutant of Malus hupehensis ),WT Malus hupehensis and were QZ1(a hybrid of Malus hupensis and a Cylindrical apple variety) were sampled and underwent RNA-Seq analysis.
2024-10-24 | GSE276181 | GEO
Project description:Assembly of genomes of Actinidia genus
Project description:Nosema is a diverse fungal genus of microsporidian unicellular, obligate symbionts of insects and other arthropods. We performed a comparative genomic analysis of N. muscidifuracis, a Nosema species infecting parasitoid wasp genus Muscidifurax, with six other genome-sequenced Nosema species. A sequence motif containing at least three consecutive Cs was significantly enriched immediately upstream of the start codon in all seven Nosema genomes. Interestingly, this motif is present in ~90% of highly expressed genes, compared to ~20% in lowly expressed genes N. muscidifuracis, which may function as a cis-regulatory element for gene expression control and regulation. Our study provides new insights into the gene regulation evolution in Nosema.
2023-11-26 | GSE248484 | GEO
Project description:Organelle genomes of species of genus Rhizosolenia
| PRJNA686853 | ENA
Project description:Organelle genomes of species of genus Thalassiosira
| PRJNA684688 | ENA
Project description:Evolution of genomes in the genus Rosa
| PRJNA454073 | ENA
Project description:Chloroplast genomes of Heterotropa (genus Asarum Aristolochiaceae)
Project description:The genus Lactobacillus contains over 100 different species that were traditionally considered to be uniformly non-motile. However, at least twelve motile species are known to exist in the L. salivarius clade of this genus. Of these, Lactobacillus rumnis is the only motile species that is also autochthonous to the mammalian gastrointestinal tract. The genomes of two L. ruminis strains, ATCC25644 (human isolate, non-motile) and ATCC27782 (bovine isolate, motile) were sequenced and annotated to identify the genes responsible for flagellum biogenesis and chemotaxis in this species. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644 during the motile growth phase.