Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:Purpose: To determine whether previously observed behavioral differences in alcoholic human patients after fecal microbiota transplantation (FMT) could be transferred to mice. Methods: Fecal microbiota samples from a previously published phase 1, double-blind, randomized clinical trial of AUD-related cirrhosis patients were used to colonize germ-free mice. Fecal material was transferred to 10-15-week-old GF C57BL/6 male mice by daily gavage for 3 day. The mice were housed in sterile individually filtered cages for 15 days after which stool was collected and then they underwent the alcohol preference experiment using 2-bottle choice drinking (water and 20% ethanol v/v). Microbial DNA was isolated from stool samples by sequencing the V1 and V2 variable regions of the bacterial 16S rRNA gene were sequenced using Multitag fusion primers and sequenced on an Ion Torrent PGM next-generation sequencer. Intestinal mucosa, liver, and prefrontal cortex tissue was collected from mice at time of sacrifice. RNAseq was used to measure gene expression in pre-FMT and post-FMT samples. RNAseq data were aligned to the mouse genome (GRCm39) using STAR (version 2.7.9a) and counts were generated with HTSeq (version 0.13.5). Genes with very low counts across the study (defined as fewer than 10 counts in more than 2 samples) were eliminated before differential expression analysis. Low count genes were determined separately for each tissue type. The DESeq2 package for R was then used to measure differential expression between pre-FMT and post-FMT mice in the intestine, liver, and PFC. Benjamini and Hochberg False Discovery Rate (FDR) was used to correct for multiple testing with FDR ≤ 0.2 considered significant. Results: Mice colonized with post-FMT stool significantly reduced ethanol acceptance, intake and preference versus pre-FMT colonized mice. Microbial taxa that were higher in post-FMT humans were also associated with lower alcohol intake and preference in mice. RNAseq further showed that differential gene expression, post-FMT, occurred in the intestine rather than the liver and prefrontal cortex. Conclusions: FMT leads to significant change in gut microbiome population, which in turn alters gene expression in the intestine. FMT also significantly affects alcohol consumption. The microbiotal-intestinal interface may alter gut-liver-brain axis and reduce alcohol consumption in humans.
Project description:In this randomised placebo-controlled trial, irritable bowel syndrome (IBS) patients were treated with faecal material from a healthy donor (n=8, allogenic FMT) or with their own faecal microbiota (n=8, autologous FMT). The faecal transplant was administered by whole colonoscopy into the caecum (30 g of stool in 150 ml sterile saline). Two weeks before the FMT (baseline) as well as two and eight weeks after the FMT, the participants underwent a sigmoidoscopy, and biopsies were collected at a standardised location (20-25 cm from the anal verge at the crossing with the arteria iliaca communis) from an uncleansed sigmoid. In patients treated with allogenic FMT, predominantly immune response-related genes sets were induced, with the strongest response two weeks after FMT. In patients treated with autologous FMT, predominantly metabolism-related gene sets were affected.
Project description:We performed a phase I clinical trial to assess the safety and feasibility of fecal microbiota transplantation (FMT) and re-induction of anti-PD-1 immunotherapy in patients with anti-PD-1-refractory metastatic melanoma. FMT donors were two metastatic melanoma patients who achieved a durable complete response. FMT recipient patients were metastatic melanoma patients who failed at least one anti-PD-1 line of treatment. Each recipient patient received FMT implants from only one of the two donors. FMT was conducted by both colonoscopy and oral ingestion of stool capsules, followed by anti-PD-1 re-treatment (Nivolumab, BMS). Recipient patients underwent pre- and post-treatment stool sampling, tissue biopsy of both gut and tumor, and total body imaging. Clinical responses were observed in three patients, including two partial responses and one complete response. Notably, treatment with FMT was associated with favorable changes in immune cell infiltrates and gene expression profiles in both the gut lamina propria and the tumor microenvironment.
Project description:Microbiome analysis was performed on the patient samples collected pre-FMT and on days after FMT, and on samples collected from the FMT donor. Genomic bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool kit (Qiagen, Hilden, Germany), with the addition of a bead-beating lysis step. Genomic 16S ribosomal-RNA V4 variable regions were amplified and sequenced on the Illumina MiSeq platform.
Project description:Gastrointestinal microbes modulate peristalsis and stimulate the enteric nervous system (ENS), whose development, as in the central nervous system (CNS), continues into the murine postweaning period. Given that adult CNS function depends on stimuli received during critical periods of postnatal development, we hypothesized that adult ENS function, namely motility, depends on microbial stimuli during similar critical periods. We gave fecal microbiota transplantation (FMT) to germ-free mice at weaning or as adults and found that only the mice given FMT at weaning recovered normal transit, while those given FMT as adults showed limited improvements. RNAseq of colonic muscularis propria revealed enrichments in neuron developmental pathways in mice exposed to gut microbes earlier in life, while mice exposed later – or not at all – showed exaggerated expression of inflammatory pathways. These findings highlight a microbiota-dependent sensitive period in ENS development, pointing to potential roles of the early life microbiome in later life dysmotility.
Project description:This study aims to elucidate the impact of gut microbiota alterations on tumorigenesis and immune response in lung adenocarcinoma (LUAD). Using Gprc5a-/- mice as a model, we performed fecal microbiota transfer (FMT) from Gprc5a-/- and Gprc5a-/-; Lcn2-/- donors to investigate the role of gut microbiome changes in modulating tumor growth and the immune microenvironment. Single-cell RNA sequencing (scRNA-seq) was conducted on colonic lamina propria and subcutaneous tumor tissues. Our findings demonstrate that gut microbiota from Lcn2-deficient mice promotes systemic inflammation and immunosuppression, enhancing tumor progression. This study provides insights into the microbiome's influence on LUAD and potential therapeutic strategies targeting microbiome-related pathways.