Project description:In this randomised placebo-controlled trial, irritable bowel syndrome (IBS) patients were treated with faecal material from a healthy donor (n=8, allogenic FMT) or with their own faecal microbiota (n=8, autologous FMT). The faecal transplant was administered by whole colonoscopy into the caecum (30 g of stool in 150 ml sterile saline). Two weeks before the FMT (baseline) as well as two and eight weeks after the FMT, the participants underwent a sigmoidoscopy, and biopsies were collected at a standardised location (20-25 cm from the anal verge at the crossing with the arteria iliaca communis) from an uncleansed sigmoid. In patients treated with allogenic FMT, predominantly immune response-related genes sets were induced, with the strongest response two weeks after FMT. In patients treated with autologous FMT, predominantly metabolism-related gene sets were affected.
Project description:We performed a phase I clinical trial to assess the safety and feasibility of fecal microbiota transplantation (FMT) and re-induction of anti-PD-1 immunotherapy in patients with anti-PD-1-refractory metastatic melanoma. FMT donors were two metastatic melanoma patients who achieved a durable complete response. FMT recipient patients were metastatic melanoma patients who failed at least one anti-PD-1 line of treatment. Each recipient patient received FMT implants from only one of the two donors. FMT was conducted by both colonoscopy and oral ingestion of stool capsules, followed by anti-PD-1 re-treatment (Nivolumab, BMS). Recipient patients underwent pre- and post-treatment stool sampling, tissue biopsy of both gut and tumor, and total body imaging. Clinical responses were observed in three patients, including two partial responses and one complete response. Notably, treatment with FMT was associated with favorable changes in immune cell infiltrates and gene expression profiles in both the gut lamina propria and the tumor microenvironment.
Project description:Purpose: To determine whether previously observed behavioral differences in alcoholic human patients after fecal microbiota transplantation (FMT) could be transferred to mice. Methods: Fecal microbiota samples from a previously published phase 1, double-blind, randomized clinical trial of AUD-related cirrhosis patients were used to colonize germ-free mice. Fecal material was transferred to 10-15-week-old GF C57BL/6 male mice by daily gavage for 3 day. The mice were housed in sterile individually filtered cages for 15 days after which stool was collected and then they underwent the alcohol preference experiment using 2-bottle choice drinking (water and 20% ethanol v/v). Microbial DNA was isolated from stool samples by sequencing the V1 and V2 variable regions of the bacterial 16S rRNA gene were sequenced using Multitag fusion primers and sequenced on an Ion Torrent PGM next-generation sequencer. Intestinal mucosa, liver, and prefrontal cortex tissue was collected from mice at time of sacrifice. RNAseq was used to measure gene expression in pre-FMT and post-FMT samples. RNAseq data were aligned to the mouse genome (GRCm39) using STAR (version 2.7.9a) and counts were generated with HTSeq (version 0.13.5). Genes with very low counts across the study (defined as fewer than 10 counts in more than 2 samples) were eliminated before differential expression analysis. Low count genes were determined separately for each tissue type. The DESeq2 package for R was then used to measure differential expression between pre-FMT and post-FMT mice in the intestine, liver, and PFC. Benjamini and Hochberg False Discovery Rate (FDR) was used to correct for multiple testing with FDR ≤ 0.2 considered significant. Results: Mice colonized with post-FMT stool significantly reduced ethanol acceptance, intake and preference versus pre-FMT colonized mice. Microbial taxa that were higher in post-FMT humans were also associated with lower alcohol intake and preference in mice. RNAseq further showed that differential gene expression, post-FMT, occurred in the intestine rather than the liver and prefrontal cortex. Conclusions: FMT leads to significant change in gut microbiome population, which in turn alters gene expression in the intestine. FMT also significantly affects alcohol consumption. The microbiotal-intestinal interface may alter gut-liver-brain axis and reduce alcohol consumption in humans.
Project description:Early-weaning-induced stress causes diarrhea, thereby reduces growth performance of piglets. Gut bacterial dysbiosis emerges as a leading cause of post-weaning diarrhea. The present study was aimed to investigate the effect of capsulized fecal microbiota transportation (FMT) on gut bacterial community, immune response and gut barrier function of weaned piglets. Thirty-two were randomly divided into two groups fed with basal diet for 21 days. Recipient group was inoculated orally with capsulized fecal microbiota of health Tibetan pig daily morning during whole period of trial, while control group was given orally empty capsule. The results showed that the F/G ratio, diarrhea ratio, diarrhea index, and histological damage score of recipient piglets were significantly decreased. FMT treatment also significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, Methanobrevibacter and Sarcina in colon of recipient piglets were increased, and the relative abundances of Campylobacter, Proteobacteria, and Melainabacteria were significantly decreased compared with control group.
Project description:In summary, we characterized the role of m6A modification in pulmonary fibrosis. We reveal that m6A modification is increased in bleomycin induced pulmonary fibrosis mice model, FMT-derived myofibroblasts and idiopathic pulmonary fibrosis patient lung samples. Lowering m6A level through silencing METTL3 suppress FMT process in vitro and vivo. Fundamentally, m6A modification regulates FMT by modulating the translation of KCNH6 mRNA in a YTHDF1 dependent manner. This study provides novel insights into the mechanism of FMT process and suggests m6A modification intervention may be a promising therapeutic strategy for pulmonary fibrosis.
Project description:Necrotizing enterocolitis (NEC) is an acute and life-threatening gastrointestinal disorder afflicting preterm infants, which is currently unpreventable. Fecal microbiota transplantation (FMT) is a promising preventative therapy, but potential bacterial infection raise concern. Removal of bacteria from donor feces may reduce this risk while maintaining the NEC-preventive effects. We aimed to assess preclinical efficacy and safety of bacteria-free fecal filtrate transfer (FFT). Using fecal material from healthy suckling piglets, we administered FMT rectally, or cognate FFT either rectally or oro-gastrically to formula-fed preterm, cesarean-delivered piglets as a model for preterm infants, We compared gut pathology and related safety parameters with saline controls, and analyzed ileal mucosal transcriptome to gauge the host e response to FMT and FFT treatments relative to control. Results showed that oro-gastric FFT prevented NEC, whereas FMT did not perform better than control. Moreover, FFT but not FMT reduced intestinal permeability, whereas FMT animals had reduced body weight increase and intestinal growth. Global gene expression of host mucosa responded to FMT but not FFT with increased and decreased bacterial and viral defense mechanisms, respectively. In conclusion, as preterm infants are extremely vulnerable to enteric bacterial infections, rational NEC-preventive strategies need incontestable safety profiles. Here we show in a clinically relevant animal model that FFT, as opposed to FMT, efficiently prevents NEC without any recognizable side effects. If translatable to preterm infants, this could lead to a change of practice and in turn a reduction in NEC burden.