Project description:CRISPR/Cas9 mediated gene knockout show that nanos2+ progenitor cells are indispensable for male and female germline maintenance in Nematostella. This suggests nanos and piwi genes have a conserved role in somatic and germline stem cells in cnidarians.
Project description:The basic helix-loop helix transcription factor Twist plays diverse roles in mesodermal development across bilaterians, but its function in cnidarians remains unclear. Here, we investigate the role of Twist in tentacle morphogenesis and tissue homeostasis in the sea anemone Nematostella vectensis. Using a CRISPR/Cas9 generated knockout, we show that twist mutants exhibit impaired secondary tentacle formation, reduced proliferation in budding tentacles, and absence of micronemes, structures that demarcate tentacle boundaries-suggesting defects in spatial patterning. We demonstrate that twist expression is regulated by Wnt, BMP, and Notch signalling but is independent of MAPK and Hedgehog pathways. Loss of Twist disrupts expression of mesodermal transcription factors paraxis and tbx15 and perturbs the TOR-FGF signalling feedback loop necessary for normal tentacle growth. Moreover, starting at juveniles, mutants develop neoplasm-like epithelial overgrowth with tentacle-like molecular and morphological profiles, indicating a role for Twist in maintaining tissue homeostasis at the oral pole. Together, our findings reveal that Twist integrates major signalling pathways to regulate secondary tentacle patterning and maintain spatial tissue organisation in the diploblastic Nematostella vectensis.
Project description:Cnidarians, including corals, sea anemones, and jellyfish, possess specialized stinging cells called cnidocytes that function in prey capture and defense. These cells represent a striking evolutionary innovation and include distinct types such as venom injecting nematocytes and mechanically acting spirocytes. While their biomechanics and transcriptional regulation have been studied extensively, little is known about their epigenetic regulation. Here, we combined epigenetic profiling with RNA sequencing in the sea anemone Nematostella vectensis to explore regulatory programs underlying cnidocyte diversity. We identified cell type specific regulatory elements in promoter and enhancer regions and linked them to distinct gene expression programs. This analysis revealed fundamental differences between nematocytes and spirocytes and uncovered a previously unrecognized nematocyte population that expresses the nep3 toxin but lacks most other toxins. These findings highlight the complexity of cnidocyte regulation and suggest greater cellular diversity within this defining cnidarian cell type than previously appreciated.
Project description:Cnidarians, including corals, sea anemones, and jellyfish, possess specialized stinging cells called cnidocytes that function in prey capture and defense. These cells represent a striking evolutionary innovation and include distinct types such as venom injecting nematocytes and mechanically acting spirocytes. While their biomechanics and transcriptional regulation have been studied extensively, little is known about their epigenetic regulation. Here, we combined epigenetic profiling with RNA sequencing in the sea anemone Nematostella vectensis to explore regulatory programs underlying cnidocyte diversity. We identified cell type specific regulatory elements in promoter and enhancer regions and linked them to distinct gene expression programs. This analysis revealed fundamental differences between nematocytes and spirocytes and uncovered a previously unrecognized nematocyte population that expresses the nep3 toxin but lacks most other toxins. These findings highlight the complexity of cnidocyte regulation and suggest greater cellular diversity within this defining cnidarian cell type than previously appreciated.
Project description:MicroRNAs of bilaterian animals undergo posttranscriptional modifications such as methylation, tailing and trimming that regulate miRNA stability and function. To gain insight on the evolution of miRNA posttranscriptional modification, we studied regulation of miRNA stability by methylation in the sea anemone Nematostella vectensis, a representative of Cnidaria, the sister group of Bilateria.
Project description:The aim of this part of the wider project is to identify neuropeptide precursors, investigate cleavage sites on neuropeptide precursors and predict mature peptides in the sea anemone Nematostella vectensis. This was done to create a synthetic library of N. vectensis neuropeptides which were then used to test neuropeptide receptor candidates for activation by the different peptides.
Project description:NvNcol3::mOrange2 is a stable transgenic line that labels cnidocytes(stinging cells) of the sea anemone Nematostella vectensis (Nakanishi et al., Development 2012). Two week old primary polyps were dissociated and the NvNcol3::mOrange2 positive and negative cells were enriched by FACS.
Project description:NvElav1::mOrange is a stable transgenic line that labels a large fraction of the nervous system of the sea anemone Nematostella vectensis (Nakanishi et al., Development 2012). Two week old primary polyps were dissociated and the NvElav1::mOrange positive cells were enriched by FACS.