Project description:The homologous Ace2 and Swi5 transcription factors of Saccharomyces cerevisiae have identical DNA-binding domains, and both are cell cycle regulated. There are common target genes, as well as genes activated only by Ace2 and other genes activated only by Swi5. Keywords: genetic modification
Project description:The homologous Ace2 and Swi5 transcription factors of Saccharomyces cerevisiae have identical DNA-binding domains, and both are cell cycle regulated. There are common target genes, as well as genes activated only by Ace2 and other genes activated only by Swi5. Keywords: genetic modification RNA was isolated from four strains: wild type, ace2 gene deletion, swi5 gene deletion, and the ace2 swi5 double gene deletion. RNAs from the three mutant strains were compared to wild type RNA in a microarray hybridization experiment.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:We report change in the nucleosome occupancy and accessibility upon deletion of ATP-dependent chromatin remodellers (ISW1, ISW2 & CHD1) in Saccharomyces cerevisiae.
Project description:Pre-mRNA splicing is vital for the proper function and regulation of eukaryotic gene expression. Saccharomyces cerevisiae has been used as a model organism for studies of RNA splicing because of the striking conservation of the spliceosome and its catalytic activity. Nonetheless, there are relatively few annotated alternative splice forms, particularly when compared to higher eukaryotes. Here, we describe a method to combine large scale RNA sequencing data to accurately discover novel splice isoforms in Saccharomyces cerevisiae. Using our method, we find extensive evidence for novel splicing of annotated intron-containing genes as well as genes without previously annotated introns and splicing of transcripts that are antisense to annotated genes. By incorporating several mutant strains at varied temperatures, we find conditions which lead to differences in alternative splice form usage. Despite this, every class and category of alternative splicing we find in our datasets is found, often at lower frequency, in wildtype cells under normal growth conditions. Together, these findings show that there is widespread splicing in Saccharomyces cerevisiae.