Project description:This project uses TMT labeling quantitative proteomics technology to carry out research, and a total of 898 proteins have been identified. Differentially expressed proteins were screened according to the criteria of expression fold change of more than 1.5-fold (up-regulation more than 1.5-fold or down-regulation less than 0.67) and P value<0.05. Among them, taking the comparison group Control VS H2O2 as an example, there were 31 up-regulated differentially expressed proteins and 81 down-regulated differentially expressed proteins. Through GO enrichment and KEGG pathway analysis, it was found that these differentially expressed proteins are mainly involved in important biological processes such as single-organism metabolic process, small molecule metabolic process, organophosphate metabolic process, organophosphate biosynthetic process and carbohydrate derivative biosynthetic process, and are mainly involved in the regulation of Metabolic pathways, Fructose and mannose metabolism, Oxidative phosphorylation, Tyrosine and Degradation of aromatic compounds and other important KEGG metabolic pathways.
Project description:Lactiplantibacillus plantarum has a strong carbohydrate utilization ability. This characteristic plays an important role in its gastrointestinal tract colonization and probiotic effects. L. plantarum LP-F1 presents a high carbohydrate utilization capacity. The genome analysis of 165 L. plantarum strains indicated the species has a plenty of carbohydrate metabolism genes, presenting a strain specificity. Furthermore, two-component systems (TCSs) analysis revealed that the species has more TCSs than other lactic acid bacteria, and the distribution of TCS also shows the strain specificity. In order to clarify the sugar metabolism mechanism under different carbohydrate fermentation conditions, the expressions of 27 carbohydrate metabolism genes, catabolite control protein A (CcpA) gene ccpA, and TCSs genes were analyzed by quantitative real-time PCR technology. The correlation analysis between the expressions of regulatory genes and sugar metabolism genes showed that some regulatory genes were correlated with most of the sugar metabolism genes, suggesting that some TCSs might be involved in the regulation of sugar metabolism.