Project description:Gonadotropin surge acts on the preovulatory follicle of the ovary to induce luteinization of follicular cells, oocyte meiotic maturation, cumulus expansion and follicular rupture leading to ovulation. These processes are brought about by spatial and temporal changes in transcriptional regulation of genes in the follicular cells in response to the gonadotropin surge. Analysis of gene expression changes in the periovulatory follicular cells will help in delineating the signal transduction pathways involved in the above mentioned processes. In monoovulatory species like bovines, the time interval of 24-28 hours between gonadotropin surge and ovulation provides distinct advantage for studying the temporal changes in the gene expression pattern. Thus, in the present study, we attempt to identify the temporal changes in the global gene expression profile in the periovulatory follicle of buffalo cows in response to gonadotropin surge and the results suggest the involvement of Insulin-like Growth Factor 1 and cytokine signaling pathways in the periovulatory events. Experiment Overall Design: To study the periovulatory gene expression changes in buffalo cows, an induced-ovulation model system involving sequential treatment with PGF2alpha and GnRH was standardized. The follicular wave containing at least one large follicle of ~7mm size was determined by ultrasonography on day 7 of the estrous cycle before administering exogenous PGF2alpha to induce luteolysis and follicular growth. Exogenous GnRH (100µg i.m) was administered 36h post PGF2alpha to induce LH surge. The time course of increase in LH levels post GnRH injection was monitored. Since peak LH levels are attained 2 h post GnRH administration, the time intervals of 3 h post GnRH (corresponding to1 h post LH surge) and 24 h post GnRH (corresponding to 22 h post LH surge) were chosen to identify the gene expression profile associated with immediate early and delayed changes in periovulatory follicle respectively. Thus ovaries were collected before, 1 h and 22 h post LH surge and follicle wall and granulosa cells were isolated from the ovaries and snap frozen for the purpose of RNA isolation.
Project description:The domestic buffalo (Bubalus bubalis), also known as water buffalo or Asian buffalo to prevent confusion with the American bison (Bison bison), wrongly named buffalo in North America, comprises two subspecies: the river buffalo (B. bubalis bubalis) and the swamp buffalo (B. bubalis kerebau). The swamp buffalo has a consistent phenotype and is considered as one type, even if many breeds are recognized within it; conversely, the river buffalo subspecies has many breeds. We found limited information available regarding the worldwide distribution of buffaloes. The best estimate is that 208,098,759 buffalo head are distributed in 77 countries in five continents. In this review, we presented the basic aspects of the water buffalo and unraveled the buffalo path followed from the origin of the species to its current global distribution. We reviewed several data sources to provide a better estimate of the world buffalo count and distribution.