Project description:Sperm carries information to the presumptive embryo upon fertilization in terms of epigenetic codes and transcripts along with the haploid genome. The epigenetic code includes DNA methylation and histone modifications. During spermatogenesis, the DNA of sperm undergoes overall methylation changes and this could have some role to play in fertilizing ability of the sperm. Many of the studies have shown that the altered methylation can cause sub fertility. In the present study we report the development of first comprehensive 4X180K buffalo (Bubalus bubalis) CpG island/promoter microarray for studying the global DNA methylation profile of buffalo sperm. The array has been developed by employing microarray based comparative genomic hybridization (aCGH) technique with bovine and buffalo DNA using bovine genome sequence as reference. The array represents 157084 features assembled from CDS, Promotor and CpG regions covering 2,967 unique genes. We also report the comparison of genome wide methylation differences in buffalo sperm from high fertile and sub fertile bulls which indicated profound discrepancies in their methylation status. A total of 96 individual genes along with another 55 genes covered under CpG islands were found differentially methylated and and were associated with different cellular functions and biological processes affecting germ cell development, spermatogenesis, capacitation and embryonic development.
Project description:The domestic buffalo (Bubalus bubalis) has presented an important role in the livestock industry, contributing to milk and meat production worldwide, especially in developing countries. However, little is known about its reproductive particularities. Studies regarding protein composition of buffalo SP are still limited and a complete mapping of buffalo SP proteins is still lacking in the literature. Hence, a comprehensive study of SP proteome is of great importance to better understand the mechanisms involved in male reproduction and to optimize the reproductive biotechnologies of farm animal species. Therefore, the aim of this study is to describe for the first time the Bubalus bubalis seminal plasma proteome using a label free shotgun HDMS approach. This type of analysis is interesting since it yields a high number of detected proteins, generating a dataset that is useful for further characterizing the buffalo SP.
Project description:Abstract The water buffalo (Bubalus bubalis) is an indispensable part of the Indian dairy sector and in several instances, the farmers incur economic losses due to failed pregnancy after artificial insemination (AI). One of the key factors for the failure of conception is the use of semen from the bulls of low fertilizing potential and hence, it becomes important to predict the fertility status before performing AI. In this study, the global proteomic profile of high fertile (HF) and low fertile (LF) buffalo bull spermatozoa was established using a high-throughput LC-MS/MS technique. A total of 1385 proteins (≥ 1 high-quality PSM/s, ≥ 1 unique peptides, P < 0.05, FDR < 0.01) were identified out of which, 1002 were common between both the HF and LF groups while 288 and 95 proteins were unique to HF and LF groups respectively. We observed 211 and 342 significantly upregulated (log Fc ≥2) and downregulated in HF (log Fc ≤0.5) spermatozoa (p <0.05). Gene ontology analysis revealed that the fertility associated upregulated proteins were involved in spermatogenesis, sperm motility, acrosome integrity, zona pellucida binding and other associated sperm functions. Besides this, the downregulated proteins were involved in glycolysis, fatty acid degradation and inflammation. Furthermore, fertility related differentially abundant proteins (DAPs) on sperm viz., AKAP3, Sp17 and DLD were validated through Western blotting and immunocytochemistry which was in coherence with the LC-MS/MS data. The DAPs identified in this study may be used as potential protein candidates for predicting fertility in buffaloes. Our findings provide an opportunity in mitigating the economic losses that farmers incur due to male infertility.