Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:In this study, we used transcriptomic and hormonomic approaches to examine drought-induced changes in barley roots and leaves and its rhizosphere. By studying hormonal responses, alternative splicing events in barley, and changes in the rhizosphere microbiome, we aimed to provide a comprehensive view of barley drought-adaptive mechanisms and potential plant-microbe interactions under drought stress. This approach improved our understanding of barley adaptive strategies and highlighted the importance of considering plant-microbe interactions in the context of climate change.
Project description:Common bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common bean and soybean in triplicate to the soybean GeneChip. Initial data analysis showed a decreased sensitivity and specificity in common bean cross-species hybridization (CSH) GeneChip data compared to that of soybean. We employed a method that masked putative probes targeting inter-species variable (ISV) regions between common bean and soybean. A masking signal intensity threshold was selected that optimized both sensitivity and specificity. After masking for ISV regions, the number of differentially-expressed genes identified in common bean was increased by about 2.8-fold reflecting increased sensitivity. Quantitative RT-PCR analysis of a total of 20 randomly selected genes and purine-ureides pathway genes demonstrated an increased specificity after masking for ISV regions. We also evaluated masked probe frequency per probe set to gain insight into the sequence divergence pattern between common bean and soybean. The results from this study suggested that transcript profiling in common bean can be done using the soybean GeneChip. However, a significant decrease in sensitivity and specificity can be expected. Problems associated with CSH GeneChip data can be mitigated by masking probes targeting ISV regions. In addition to transcript profiling CSH of the GeneChip in combination with masking probes in the ISV regions can be used for comparative ecological and/or evolutionary genomics studies.