Project description:The goat of this project is to exploreAlginate oligosaccharides (AOS) effect on the recovery of liver function. RNA-seq of liver samples from different groups: Con, busulfan(B), AOS, B+AOS.
Project description:To explore functional circRNAs during goat muscle development, we systematically investigated the circRNAs profiles using high throughput transcriptome sequencing technology (RNA-seq) at key developmental stages of fetus and Kid in Haimen goat.
Project description:The domestic goat, Capra hircus (2n=60), is one of the most important domestic livestock species in the world. Here we report its high quality reference genome generated by combining Illumina short reads sequencing and a new automated and high throughput whole genome mapping system based on the optical mapping technology which was used to generate extremely long super-scaffolds. The N50 size of contigs, scaffolds, and super-scaffolds for the sequence assembly reported herein are 18.7 kb, 3.06 Mb, and 18.2 Mb, respectively. Almost 95% of the supper-scaffolds are anchored on chromosomes based on conserved syntenic information with cattle. The assembly is strongly supported by the RH map of goat chromosome 1. We annotated 22,175 protein-coding genes, most of which are recovered by RNA-seq data of ten tissues. Rapidly evolving genes and gene families are enriched in metabolism and immune systems, consistent with the fact that the goat is one of the most adaptable and geographically widespread livestock species. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat revealed 51 genes that were significantly differentially expressed between the two types of hair follicles. This study not only provides a high quality reference genome for an important livestock species, but also shows that the new automated optical mapping technology can be used in a de novo assembly of large genomes. Corresponding whole genome sequencing is available in NCBI BioProject PRJNA158393. We have sequenced a 3-year-old female Yunnan black goat and constructed a reference sequence for this breed. In order to improve quality of gene models, RNA samples of ten tissues (Bladder, Brain, Heart, Kidney, Liver, Lung, Lymph, Muscle, Ovarian, Spleen) were extracted from the same goat which was sequenced. To investigate the genic basis underlying the development of cashmere fibers using the goat reference genome assembly and annotated genes, we extracted RNA samples of primary hair follicle and secondary hair follicle from three Inner Mongolia cashmere goats and conducted transcriptome sequencing and DGE analysis. This submission represents RNA-Seq component of study.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post transcriptional control of several pathway intermediates, and essential for regulation in skeletal muscle of many species, such as mice, cattle, pig and so on. However, a little number of miRNAs have been reported in the muscle development of goat. In this study, the longissimus dorsi transcripts of goat at 1- and 10-month-old were analyzed for RNA-seq and miRNA-seq. The results showed that 10-month-old Longlin goat expressed 327 up- and 419 down-regulated differentially expressed genes (DEGs) compared with the 1-month-old were founded. In addition, 20 co-up-regulated and 55 co-down-regulated miRNAs involved in muscle fiber hypertrophy of goat were identified in 10-month-old Longlin and Nubian goat compared with 1-month-old. Five miRNA–mRNA pairs (chi-let-7b-3p-MIRLET7A, chi-miR193b-3p-MMP14, chi-miR-355-5p-DGAT2, novel_128-LOC102178119, novel_140-SOD3) involved in the goat skeletal muscle development were identified by miRNA–mRNA negative correlation network analysis. Our results provided an insight into the functional roles of miRNAs of goat muscle-associated miRNAs, allowing us to better understand the transformation of miRNA roles during mammalian muscle development.
Project description:The goat of this project is to explore cirRNA28250 regulation goat mammary gland lipid metabolism. We tried to search the mechanism of cirRNA28250 regulation lipid metabolism. RNA-seq of goat mamamary gland cells samples from different groups: 5NC, cirRNA28250 overexpression, 3NC, cirRNA28250 knockdown. The goat mammary gland cells were cultured in 3D condition. The cell were transfected with virus with cirRNA28250 gene (overexpression), or inhibition of cirRNA28250 expression ( cirRNA28250 gene knockdown).
Project description:The goat of this project is to explore lncRNA55666 efffect on small RNA to regulation goat mammary gland lipid metabolism. We tried to search the mechanism of lncRNA55666 regulation lipid metabolism through miRNA. small RNA seqencing of goat mamamary gland cells samples from different groups: 5NC, lncRNA55666 overexpression, 3NC, lncRNA55666 knockdown. The goat mammary gland cells were cultured in 3D condition. The cell were transfected with virus with lncRNA55666 gene (overexpression), or inhibition of lncRNA expression (lncRNA gene knockdown).
Project description:The goat of this project is to explore cirRNA28250 efffect on small RNA to regulation goat mammary gland lipid metabolism. We tried to search the mechanism of cirRNA28250 regulation lipid metabolism through miRNA. small RNA seqencing of goat mamamary gland cells samples from different groups: 5NC, cirRNA28250 overexpression, 3NC,cirRNA28250 knockdown. The goat mammary gland cells were cultured in 3D condition. The cell were transfected with virus with cirRNA28250 gene (overexpression), or inhibition of cirRNA28250A expression (cirRNA28250 gene knockdown).