Project description:Ribosomal DNA (rDNA) arrays are highly repetitive regions of the genome which encode essential genes required to produce ribosomes. DNA double-stranded breaks (DSBs) generated within rDNA genes elicit a unique cellular response involving robust transcriptional silencing and nucleolar reorganization into ‘cap’ structures at the nucleolar periphery. This process is coordinated by the nucleolar scaffolding protein TCOF1, which functions to recruit the DNA repair proteins NBS1 and TOPBP1 that activate the ATM and ATR kinases, resulting in ribosomal RNA (rRNA) transcriptional silencing and nucleolar segregation. However, the DNA damage and repair response at rDNA arrays remains incompletely understood. Here, we investigate the cellular response to rDNA DSBs using proteomics and genetic CRISPR-Cas9 screening. We show that the protein UFMylation pathway and the HUSH complex are important for cell viability and survival in response to rDNA DSBs, and that the E3 UFM1-ligase UFL1 and its heterodimer DDRGK1 are associated with TCOF1 at nucleolar caps. Loss of UFL1 leads to impaired ATM activation, reduced rRNA transcriptional silencing, and an overall reduction in nucleolar segregation. We identified ATM, UNC45A and SMC6 as UFMylated proteins, in which UFMylation may facilitate ATM activation and segregation of damaged rDNA to the nucleolar periphery. Altogether, our findings provide the first evidence for a role for UFMylation in rDNA DSB repair.
Project description:Ribosomal DNA (rDNA) arrays are highly repetitive regions of the genome which encode essential genes required to produce ribosomes. DNA double-stranded breaks (DSBs) generated within rDNA genes elicit a unique cellular response involving robust transcriptional silencing and nucleolar reorganization into ‘cap’ structures at the nucleolar periphery. This process is coordinated by the nucleolar scaffolding protein TCOF1, which functions to recruit the DNA repair proteins NBS1 and TOPBP1 that activate the ATM and ATR kinases, resulting in ribosomal RNA (rRNA) transcriptional silencing and nucleolar segregation. However, the DNA damage and repair response at rDNA arrays remains incompletely understood. Here, we investigate the cellular response to rDNA DSBs using proteomics and genetic CRISPR-Cas9 screening. We show that the protein UFMylation pathway and the HUSH complex are important for cell viability and survival in response to rDNA DSBs, and that the E3 UFM1-ligase UFL1 and its heterodimer DDRGK1 are associated with TCOF1 at nucleolar caps. Loss of UFL1 leads to impaired ATM activation, reduced rRNA transcriptional silencing, and an overall reduction in nucleolar segregation. We identified ATM, UNC45A and SMC6 as UFMylated proteins, in which UFMylation may facilitate ATM activation and segregation of damaged rDNA to the nucleolar periphery. Altogether, our findings provide the first evidence for a role for UFMylation in rDNA DSB repair.
Project description:UFM1 is a small, metazoan-specific, ubiquitin-like protein modifier that is essential for embryonic development. Although loss-of-function mutations in UFM1 conjugation are linked to ER stress, neither the biological function nor the relevant cellular targets of this protein modifier are known. Here we show that a largely uncharacterized ribosomal protein, RPL26, is the principal target of UFM1 conjugation. RPL26 UFMylation and deUFMylation is catalyzed by enzyme complexes tethered to the cytoplasmic surface of the ER and UFMylated RPL26 is highly enriched on ER membrane-bound ribosomes and polysomes. Biochemical analysis and structural modeling establish that UFMylated RPL26 and the UFMylation machinery are in close proximity to the SEC61 translocon, suggesting that this modification plays a direct role in cotranslational protein translocation into the ER. These data suggest that UFMylation is a ribosomal modification specialized to facilitate metazoan-specific protein biogenesis at the ER.
Project description:During co-translational translocation at the endoplasmic reticulum (ER), ribosomes can stall and become covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit RPL26 (uL24). This process, known as UFMylation, is mediated by the UFM1 Ribosome E3 Ligase (UREL) complex, comprised of UFL1, UFBP1, and CDK5RAP3. However, the functional consequences of UFMylation and catalytic mechanisms of UREL are unknown. Here, we present crosslinking-mass spectrometry (XL-MS) data of UREL bound to 60S ribosomes.
Project description:In the bacterium Escherichia coli, RecG directs DNA synthesis during the repair of DNA double-strand breaks by homologous recombination. Examination of RecA binding during double-strand break repair in Escherichia coli in the presence and absence of RecG protein
Project description:During meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE), in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA) in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects of overabundant repair proteins.
Project description:CGH of stage 13 amplifying follicle cells to measure changes in replication fork progression in double-strand break repair mutants Comparative genomic hybridization was performed to compare amplification gradients of stage 13 follicle cells from several double-strand break repair mutants to wild type (OrR) gradients. Two-three replicates were done for each genotype.
Project description:Here, we correlated and compared two different steps of the Double-Strand Break Repair pathway: RecA loading and Holliday junction formation
Project description:The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH), an actin nucleation-promoting factor, is present in the nucleus where it regulates gene transcription and maintains nuclear organization. Here, we show that WASH interacts with core non-homologous end-joining (NHEJ) factors including Ku70/Ku80 and DNA-PKcs, and Ku70/Ku80 is involved in the recruitment of WASH to the sites of DNA double-stranded break (DSB). WASH depletion leads to increased cell sensitivity and impaired DNA repair capacity in response to etoposide-induced DSBs and reduces NHEJ efficiency. Mechanistically, we show that loss of WASH inhibits the phosphorylation of DNA-PKcs, H2AX, and KAP1 after DSB induction and reduces chromatin relaxation and the recruitment of several downstream NHEJ factors to DSBs. Moreover, WASH role in DSB repair depends on its conserved C-terminal VCA domain and Arp2/3 activation. Our findings reveal a function and mechanistic insight for WASH in DNA DSB repair by the NHEJ pathway.