Project description:(from abstract): Iron oxidation is a desirable trait of biomining microorganisms, although the mechanism is not well-understood in extreme thermoacidophiles. The complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ~2300 ORFs) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins (in)directly involved with bioleaching. As expected, the M. sedula genome encodes genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, could also be identified. These iron-oxidizing components are missing from genomes of non-leaching Sulfolobales like Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole genome transcriptional response analysis showed that 88 ORFs were up-regulated 2-fold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. Dye flip of Mse cells includes two samples, yeast exact (YE) and yeast extract + ferrous sulfate (YEF). The first slide, Y3F5, has YE RNA labeled with cy3 and YEF RNA labeled with cy5, while the second slide, F3Y5, has YEF RNA labeled with cy3 and YE RNA labeled with cy5. YE serves as the reference condition, with the expectation that ORFs involved with Fe2+ oxidation (and SO4 metabolism) will be upregulated on YEF (log2 fold change of YE-YEF < -1).
Project description:Abstract: The crenarchaeal order Sulfolobales collectively contains at least five major terminal oxidase complexes. Based on genome sequence information, all five complexes are found only in Metallosphaera sedula and Sulfolobus tokodaii, the two sequenced Sulfolobales capable of iron oxidization. While specific respiratory complexes in certain Sulfolobales have been characterized previously as proton pumps for maintaining intracellular pH and generating proton motive force (pmf), their contribution to sulfur and iron biooxidation has not been considered. For M. sedula growing in the presence of ferrous iron and reduced inorganic sulfur compounds (RISCs), global transcriptional analysis was used to track the response of specific genes associated with these complexes, as well as other known and putative respiratory electron transport chain elements. ORFs from all five terminal oxidase or bc1-like complexes were stimulated on one or more conditions tested. Components of the fox (Msed0467-0489) and soxNL-cbsABA (Msed0500-0505) terminal/quinol oxidase clusters were triggered by ferrous iron, while the soxABCDD' terminal oxidase cluster (Msed0285-0291) were induced by tetrathionate and S°. Chemolithotrophic electron transport elements, including a putative tetrathionate hydrolase (Msed0804), a novel polysulfide/sulfur/DMSO reductase-like complex (Msed0812-0818), and a novel heterodisulfide reductase-like complex (Msed1542-1550), were also stimulated by RISCs. Furthermore, several hypothetical proteins were found to have strong responses to ferrous iron or RISCs, suggesting additional candidates in iron or sulfur oxidation-related pathways. From this analysis, a comprehensive model for electron transport in M. sedula could be proposed as the basis for examining specific details of iron and sulfur oxidation in this bioleaching archaeon. 5-slide loop of Mse cells includes 5 conditions tested: yeast exact (Y), yeast extract + ferrous sulfate (YFS), yeast extract + potassium sulfate (YKS), yeast extract + potassium tetrathionate (YKT), and yeast extract + elemental sulfur (YS). Half of an RNA sample for one condition was labeled with Cy3 while the other half was labeled with Cy5. The two differently labeled samples were run on different slides. Each probe is spotted on each slide 5 times (5 replicates; spot intensities for all replicates on slide provided in associated raw data file).
Project description:(from abstract): Iron oxidation is a desirable trait of biomining microorganisms, although the mechanism is not well-understood in extreme thermoacidophiles. The complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ~2300 ORFs) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins (in)directly involved with bioleaching. As expected, the M. sedula genome encodes genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, could also be identified. These iron-oxidizing components are missing from genomes of non-leaching Sulfolobales like Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole genome transcriptional response analysis showed that 88 ORFs were up-regulated 2-fold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. Keywords: substrate response
Project description:Extremely thermoacidophilic members of the Archaea such as the lithoautotroph, Metallosphaera sedula, are among the most acid resistant forms of life and are of great relevance in bioleaching. Here, adaptive laboratory evolution was used to enhance the acid resistance of this organism while genomics and transcriptomics were used in an effort to understand the molecular basis for this trait. Unlike the parental strain, the evolved derivative, M. sedula SARC-M1, grew well at pH of 0.90. Enargite (Cu3AsS4) bioleaching conducted at pH 1.20 demonstrated SARC-M1 leached 23.78% more copper relative to the parental strain. Genome re-sequencing identified two mutations in SARC-M1 including a nonsynonymous mutation in Msed_0408 (an amino acid permease) and a deletion in pseudogene Msed_1517. Transcriptomic studies by RNA-seq of wild type and evolved strains at various low pH values demonstrated there was enhanced expression of genes in M. sedula SARC-M1 encoding membrane complexes and enzymes that extrude protons or that catalyze proton-consuming reactions. In addition, M. sedula SARC-M1 exhibited reduced expression of genes encoding enzymes that catalyze proton-generating reactions. These unique genomic and transcriptomic features of M. sedula SARC-M1 support a model for increased acid resistance arising from enhanced control over cytoplasmic pH.
Project description:Abstract: The crenarchaeal order Sulfolobales collectively contains at least five major terminal oxidase complexes. Based on genome sequence information, all five complexes are found only in Metallosphaera sedula and Sulfolobus tokodaii, the two sequenced Sulfolobales capable of iron oxidization. While specific respiratory complexes in certain Sulfolobales have been characterized previously as proton pumps for maintaining intracellular pH and generating proton motive force (pmf), their contribution to sulfur and iron biooxidation has not been considered. For M. sedula growing in the presence of ferrous iron and reduced inorganic sulfur compounds (RISCs), global transcriptional analysis was used to track the response of specific genes associated with these complexes, as well as other known and putative respiratory electron transport chain elements. ORFs from all five terminal oxidase or bc1-like complexes were stimulated on one or more conditions tested. Components of the fox (Msed0467-0489) and soxNL-cbsABA (Msed0500-0505) terminal/quinol oxidase clusters were triggered by ferrous iron, while the soxABCDD' terminal oxidase cluster (Msed0285-0291) were induced by tetrathionate and S°. Chemolithotrophic electron transport elements, including a putative tetrathionate hydrolase (Msed0804), a novel polysulfide/sulfur/DMSO reductase-like complex (Msed0812-0818), and a novel heterodisulfide reductase-like complex (Msed1542-1550), were also stimulated by RISCs. Furthermore, several hypothetical proteins were found to have strong responses to ferrous iron or RISCs, suggesting additional candidates in iron or sulfur oxidation-related pathways. From this analysis, a comprehensive model for electron transport in M. sedula could be proposed as the basis for examining specific details of iron and sulfur oxidation in this bioleaching archaeon.
Project description:Extremely thermoacidophilic members of the Archaea such as the lithoautotroph, Metallosphaera sedula, are among the most acid resistant forms of life and are of great relevance in bioleaching. Here, adaptive laboratory evolution was used to enhance the acid resistance of this organism while genomics and transcriptomics were used in an effort to understand the molecular basis for this trait. Unlike the parental strain, the evolved derivative, M. sedula SARC-M1, grew well at pH of 0.90. Enargite (Cu3AsS4) bioleaching conducted at pH 1.20 demonstrated SARC-M1 leached 23.78% more copper relative to the parental strain. Genome re-sequencing identified two mutations in SARC-M1 including a nonsynonymous mutation in Msed_0408 (an amino acid permease) and a deletion in pseudogene Msed_1517. Transcriptomic studies by RNA-seq of wild type and evolved strains at various low pH values demonstrated there was enhanced expression of genes in M. sedula SARC-M1 encoding membrane complexes and enzymes that extrude protons or that catalyze proton-consuming reactions. In addition, M. sedula SARC-M1 exhibited reduced expression of genes encoding enzymes that catalyze proton-generating reactions. These unique genomic and transcriptomic features of M. sedula SARC-M1 support a model for increased acid resistance arising from enhanced control over cytoplasmic pH. 3 samples were analyzed: 1 control and 2 experimental samples