Project description:To study mixotrophy, it is desirable to have an organism capable of growth in the presence and absence of both organic and inorganic carbon sources, as well as organic and inorganic energy sources. Metallosphaera sedula is an extremely thermoacidophilic archaeon which has been shown to grow in the presence of inorganic carbon and energy source supplements (autotrophy), organic carbon and energy source supplements (heterotrophy), and in the presence of organic carbon and inorganic energy source supplements. The recent elucidation of M. sedulaâ??s inorganic carbon fixation cycle and its genome sequence further facilitate its use in mixotrophic studies. In this study, we grow M. sedula heterotrophically in the presence of organic carbon and energy sources (0.1% tryptone), autotrophically in the presence of inorganic carbon and energy sources (H2 + CO2), and â??mixotrophicallyâ?? in the presence of both organic and inorganic carbon and energy sources (0.1% tryptone + H2 + CO2 ) to characterize the nature of mixotrophy exhibited. Two 3 slide loops joined at equivalent conditions (8 slides total) for Mse cells includes 3 conditions tested in duplicate (biological repeats): heterotrophy (H1 and H2), autotrophy (A1 and A2), and mixotrophy (M1 and M2). Half of an RNA sample for one condition was labeled with Cy3 while the other half was labeled with Cy5. The two differently labeled samples were run on different slides. Each probe is spotted on each slide 5 times (5 replicates; spot intensities for all replicates on slide provided in associated raw data file).
Project description:To study mixotrophy, it is desirable to have an organism capable of growth in the presence and absence of both organic and inorganic carbon sources, as well as organic and inorganic energy sources. Metallosphaera sedula is an extremely thermoacidophilic archaeon which has been shown to grow in the presence of inorganic carbon and energy source supplements (autotrophy), organic carbon and energy source supplements (heterotrophy), and in the presence of organic carbon and inorganic energy source supplements. The recent elucidation of M. sedula’s inorganic carbon fixation cycle and its genome sequence further facilitate its use in mixotrophic studies. In this study, we grow M. sedula heterotrophically in the presence of organic carbon and energy sources (0.1% tryptone), autotrophically in the presence of inorganic carbon and energy sources (H2 + CO2), and “mixotrophically” in the presence of both organic and inorganic carbon and energy sources (0.1% tryptone + H2 + CO2 ) to characterize the nature of mixotrophy exhibited.
Project description:Metallosphaera sedula is an extremely thermoacidophilic archaeon that grows heterotrophically on peptides, and chemolithoautotrophically on hydrogen, sulfur, or reduced metals as energy sources. During autotrophic growth, carbon dioxide is incorporated into cellular carbon via the 3-hydroxypropionate /4-hydroxybutyrate cycle (3HP/4HB). To date, all of the steps in the pathway have been connected to enzymes encoded in specific ORFs, except for the one responsible for ligation of coenzyme A (CoA) to 4-hydroxybutyrate (4HB). While several candidates for this step have been identified through bioinformatic analysis of the M. sedula genome, none have been shown to catalyze this biotransformation. Transcriptomic analysis of cells grown under strict H2-CO2 autotrophy was used elucidate additional candidate genes involved in carbon fixation and identify the genes which encode for 4HB-CoA synthetase. Three slide loop for Mse cells includes 3 conditions tested in duplicate (biological repeats from tandem fermentors): autotrophic carbon limited (ACL), autotrophic carbon rich (ACR), and heterotrophic (HTR). Half of an RNA sample for one condition was labeled with Cy3 while the other half was labeled with Cy5. The two differently labeled samples were run on different slides. Each probe is spotted on each slide 5 times (5 replicates; spot intensities for all replicates on slide provided in associated raw data file).
Project description:Metallosphaera sedula is an extremely thermoacidophilic archaeon that grows heterotrophically on peptides, and chemolithoautotrophically on hydrogen, sulfur, or reduced metals as energy sources. During autotrophic growth, carbon dioxide is incorporated into cellular carbon via the 3-hydroxypropionate /4-hydroxybutyrate cycle (3HP/4HB). To date, all of the steps in the pathway have been connected to enzymes encoded in specific ORFs, except for the one responsible for ligation of coenzyme A (CoA) to 4-hydroxybutyrate (4HB). While several candidates for this step have been identified through bioinformatic analysis of the M. sedula genome, none have been shown to catalyze this biotransformation. Transcriptomic analysis of cells grown under strict H2-CO2 autotrophy was used elucidate additional candidate genes involved in carbon fixation and identify the genes which encode for 4HB-CoA synthetase.
Project description:The complete genome sequence of the thermoacidophilic archaeon Metallosphaera sedula (DSM 5348) is reported here. M. sedula, originally isolated from a volcanic field in Italy, is a prolific iron-oxidizing archaeon with applications in bioleaching of sulfide minerals.