Project description:BackgroundIn recent years, the wildlife/livestock interface has attracted increased attention due to disease transmission between wild and domestic animal populations. The ongoing spread of African swine fever (ASF) in European wild boar (Sus scrofa) emphasize the need for further understanding of the wildlife/livestock interface to prevent disease spill-over between the wild and domestic populations. Although wild boar may also act as a potential source for other infectious disease agents, ASF is currently the most severe threat from wild boar to domestic pigs. To gather information on the wild boar situation at commercial pig producing farms in Sweden, a digital questionnaire survey was distributed through the animal health services.ResultsMost pigs produced for commercial purposes in Sweden are raised without outdoor access. Of the 211 responding pig producers, 80% saw wild boar or signs of wild boar activity in the vicinity of their farm at least once during the year. Observations were significantly correlated with geographical region, but there was no correlation between farm characteristics (farm size, main type of production, outdoor access) and observed wild boar presence or proximity. However, a reported higher frequency of wild boar observations was positively correlated with the observations being made in closer proximity to the farm. Hunting and strategic baiting were the most common mitigation strategies used to keep wild boar at bay. Of the 14 farms raising pigs with outdoor access, 12 responded that these pigs could be raised solely indoors if needed. Pigs with outdoor access are required to be fenced in, but double fencing in these outdoor pig enclosures was not practiced by all. A perimeter fence surrounding any type of pig farm was very rare. More than half of the producers that grew crops with intended use for pigs reported crop damage by wild boar.ConclusionThis study shows that although pigs raised for commercial purposes in Sweden are, to a large extent, kept indoors the potential for indirect contact with wild boar exists and must be considered. Variable local situations regarding wild boar abundance may require an adaptive approach regarding biosecurity efforts.
Project description:Balanced chromosomal rearrangements, mainly reciprocal translocations, are considered to be the causative agent of several clinical conditions in farmed pigs, resulting in hypoprolificacy and economic losses. Literature suggests that reciprocal translocations are heritable and can occur de novo. The prevalence rate of these balanced structural rearrangements of chromosomes differs from country to country and varies between 0.5% and 3.3%. The Australian pig population is descendent of a small founder population and has since been a closed genetic group since the 1980s. Hence, any incident of reciprocal translocation along with the pedigree of boars that contribute sperm for artificial insemination has the potential to have an economic consequence. To date, there has been no published account for screening of reciprocal translocation associated with hypoprolificacy in the Australian pig population. In this study, we performed standard and molecular cytogenetic analyses to identify evidence of chromosome rearrangements and their association with hypoprolificacy in a representative 94 boar samples from a commercial nucleus herd. We identified three novel rearrangements between chromosomes 5 and 14, between chromosomes 9 and 10, and between chromosomes 10 and 12. In addition, we also detected a reciprocal translocation between chromosomes 3 and 16 that has previously been detected in pig herds in France. The prevalence rate was 6.38% within the samples used in this study. All four rearrangements were found to have an association with hypoprolificacy. Further study and routine monitoring will be necessary to identify any further rearrangements that will allow breeders to prevent the propagation of reciprocal translocations from generation to generation within the Australian pig population.
Project description:BACKGROUND:Several studies have independently evaluated the occurrence of hepatitis E virus (HEV) and enteroparasites in swine, but no surveys have been conducted to jointly assess the prevalence and genetic diversity of enteroparasites in pigs and wild boars, their sympatric transmission between hosts, and their potential interaction with HEV. METHODS:We prospectively collected serum and faecal samples from black Iberian domestic pigs and wild boars from southern Spain between 2015?2016. We evaluated for HEV in serum and faeces, and for the presence of enteroparasites (Giardia duodenalis, Cryptosporidium spp., Blastocystis sp., Neobalantidium coli and Strongyloides spp.) in the same faecal samples. The prevalence of each intestinal parasite species was calculated. RESULTS:A total of 328 animals (56.7% black Iberian pigs and 43.3% wild boars) were included in the study. The overall global prevalence of HEV in serum was 16.8%. The overall global prevalence of each enteroparasite species was 19.5% for G. duodenalis, 8.2% for Cryptosporidium spp., 41.8% for Blastocystis sp., 31.4% for N. coli, and 8.8% for Strongyloides spp. HEV-infected animals showed a significantly lower prevalence of G. duodenalis (3.2 vs 20%; P?=?0.002) and Blastocystis sp. (38.7 vs 80%; P?<?0.001) than those uninfected by HEV. Animals carrying G. duodenalis and Blastocystis sp. infections showed a significantly lower rate of HEV infection than those not harbouring these enteroparasites (P?<?0.001). CONCLUSIONS:Our study found a high prevalence of enteroparasites in black Iberian pigs and wild boars in southern Spain, suggesting a sympatric co-transmission of some of the species investigated. It is suggested that extracellular G. duodenalis and Blastocystis sp. might have a protective effect on HEV acquisition in swine.
Project description:The necrophilous insect fauna on carcasses varies seasonally and geographically. The ecological succession of insects arriving to decaying neonate pig carcasses in central North Carolina during late summer was sampled using a novel vented-chamber collection method. We collected six blow fly species, flesh flies, house flies and 10 beetle taxa, including four species of scarab beetles. Necrophilous fly activity dominated the early decomposition stages, whereas beetle numbers remained low until day 4. By day 7, more than 50% of the pig carcasses were skeletonized and they attracted few insects. Differences in the taxa and successional patterns documented in this experiment and a previous study in the same location highlight the ecological variation in such investigations, and underscore the need for standardization, as well as for ecological succession studies on finer geographic scales.
Project description:The maternally inherited mitochondrial genome encodes key proteins of the electron transfer chain, which produces the vast majority of cellular ATP. Mitochondrial DNA (mtDNA) present in the mature oocyte acts as a template for all mtDNA that is replicated during development to meet the specific energy requirements of each tissue. Individuals that share a maternal lineage cluster into groupings known as mtDNA haplotypes. MtDNA haplotypes confer advantages and disadvantages to an organism and this affects its phenotype. In livestock, certain mtDNA haplotypes are associated with improved milk and meat quality, whilst, other species, mtDNA haplotypes have shown increased longevity, growth and susceptibility to diseases. In this work, we have set out to determine whether mtDNA haplotypes influence reproductive capacity. This has been undertaken using a pig model.To determine the genetic diversity of domestic pigs in Australia, we have sequenced the D-loop region of 368 pigs, and identified five mtDNA haplotypes (A to E). To assess reproductive capacity, we compared oocyte maturation, fertilization and development to blastocyst, and found that there were significant differences for maturation and fertilization amongst the haplotypes. We then determined that haplotypes C, D and E produced significantly larger litters. When we assessed the conversion of developmentally competent oocytes and their subsequent developmental stages to offspring, we found that haplotypes A and B had the lowest reproductive efficiencies. Amongst the mtDNA haplotypes, the number of mtDNA variants harbored at >25 % correlated with oocyte quality. MtDNA copy number for developmentally competent oocytes positively correlated with the level of the 16383delC variant. This variant is located in the conserved sequence box II, which is a regulatory region for mtDNA transcription and replication.We have identified five mtDNA haplotypes in Australian domestic pigs indicating that genetic diversity is restricted. We have also shown that there are differences in reproductive capacity amongst the mtDNA haplotypes. We conclude that mtDNA haplotypes affect pig reproductive capacity and can be used as a marker to complement current selection methods to identify productive pigs.
Project description:The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analyses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR- and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development.
Project description:Mangalitza pig (Sus scrofa domesticus) becomes more popular in European countries. The goal of this study was to evaluate the fatty acid profile of the raw and thermally processed Mangalitza hard fat from Northern Romania. For the first time, the gas chromatography-mass spectrometry-Principal component analysis technique (GC-MS-PCA)-was applied to evaluate the dissimilarity of Mangalitza lipid fractions. Three specific layers of the hard fat of Mangalitza from Northern Romania were subjected to thermal treatment at 130 °C for 30 min. Derivatized samples were analyzed by GC-MS. The highest relative content was obtained for oleic acid (methyl ester) in all hard fat layers (36.1-42.4%), while palmitic acid was found at a half (21.3-24.1%). Vaccenic or elaidic acids (trans) were found at important concentrations of 0.3-4.1% and confirmed by Fourier-transform infrared spectroscopy. These concentrations are consistently higher in thermally processed top and middle lipid layers, even at double values. The GC-MS-PCA coupled technique allows us to classify the unprocessed and processed Mangalitza hard fat specific layers, especially through the relative concentrations of vaccenic/elaidic, palmitic, and stearic acids. Further studies are needed in order to evaluate the level of degradation of various animal fats by the GC-MS-PCA technique.