Project description:We employed CRISPR/Cas-mediated genome editing to generate S2 cell lines expressing GFP-tagged dCoREST, dL(3)mbt, dLSD1 and dG9a, respectively. This allowed us to determine the genome-wide binding profiles for these proteins by ChIP-seq using the same antibody (anti-GFP) in each case.
Project description:The CRISPR-Cas universe continues to expand. The type II CRISPR-Cas system from Streptococcus pyogenes (SpyCas9) is most widely used for genome editing due to its high efficiency in cells and organisms. However, concentrating on a single CRISPR-Cas system imposes limits on target selection and multiplexed genome engineering. We hypothesized that CRISPR-Cas systems originating from different bacterial species could operate simultaneously and independently due to their distinct single-guide RNAs (sgRNAs) or CRISPR-RNAs (crRNAs), and protospacer adjacent motifs (PAMs). Additionally, we hypothesized that CRISPR-Cas activity in zebrafish could be regulated through the expression of inhibitory anti-CRISPR (Acr) proteins. Here, we use a simple mutagenesis approach to demonstrate that CRISPR-Cas systems from Streptococcus pyogenes (SpyCas9), Streptococcus aureus (SauCas9), Lachnospiraceae bacterium (LbaCas12a, previously known as LbCpf1), Acidaminococcus sp. (AspCas12a, previously known as AsCpf1) and Neisseria meningitidis (Nme2Cas9) are orthogonal systems capable of operating simultaneously in zebrafish. We implemented multichannel CRISPR recording using up to three CRISPR systems, and show that LbaCas12a may provide superior information density compared to previous methods. We also demonstrate that type II Acrs (anti-CRISPRs) are effective inhibitors of SpyCas9 in zebrafish. These results indicate that at least five CRISPR-Cas systems and two anti-CRISPR proteins are functional in zebrafish embryos. These orthogonal CRISPR-Cas systems and Acr proteins will enable combinatorial and intersectional strategies for spatiotemporal control of genome editing and genetic recording in animals.
Project description:CRISPRs and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR-Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted a comprehensive genome-wide investigation of off-target mutations using either a CRISPR-Cas9 or a TALEN strategy. We observed a similar number of SNVs and InDels for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and that the PEG treatment in itself was probably the main source of mutations found in the edited plants.
Project description:The type V-I CRISPR-Cas system is becoming increasingly attractive for its potential utility in gene editing. However, natural nucleases often exhibit low efficiency, limiting their application. Here, we utilized structure-guided rational design and combinatorial protein engineering to optimize an uncharacterized Cas12i nuclease, Cas12i3. Accordingly, we developed Cas-SF01, a Cas12i3 variant that exhibits significantly improved gene-editing activity in mammalian cells and plants. Cas-SF01 displays comparable or superior editing performance compared to SpCas9 or recently engineered Cas12 nucleases. Further analysis of PAM recognition showed that Cas-SF01 has an expanded PAM range and effectively recognizes NTTN and noncanonical NATN and TTVN PAMs. Additionally, we identified an amino acid substitution, D876R, that markedly reduced the off-target effect while maintaining high on-target activity, leading to the development of Cas-SF01HiFi (high-fidelity Cas-SF01). Finally, we demonstrated that Cas-SF01 has robust gene-editing activity in both the monocot plant rice and dicot plant pepper. Our results suggest that Cas-SF01 can serve as a robust gene-editing platform with high efficiency and specificity for future genome editing applications across different organisms.
Project description:Simple and efficient delivery of CRISPR genome editing systems in primary cells remains a major challenge. Here, we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells. PAGE couples a cell-penetrating Cas protein with a cell-penetrating endosomal escape peptide in a 30-minute incubation that yields up to ~98% editing efficiency in primary human and mouse T cells. PAGE provides a broadly generalizable platform for next generation genome engineering in primary cells. CITATION INFORMATION: Zhang Zhen, Baxter Amy E, Ren Diqiu, Qin Kunhua, Chen Zeyu, Collins Sierra M., Huang Hua, Komar Chad A., Bailer Peter F., Parker Jared B., Blobel Gerd A., Kohli Rahul M., Wherry E. John*, Berger Shelley,*, and Shi Junwei*. Peptide-assisted genome editing permits efficient CRISPR engineering of primary T cells.
Project description:CRISPR-Cas mediated DNA-interference typically relies on sequence-specific binding and nucleolytic degradation of foreign genetic material. Type IV-A CRISPR-Cas systems diverge from this general mechanism, using a nuclease-independent interference pathway to suppress gene expression for gene regulation and plasmid competition. To understand how the type IV-A system associated effector complex achieves this interference, we determined cryo-EM structures of two evolutionarily distinct type IV-A complexes (types IV-38 A1 and IV-A3) bound to cognate DNA-targets in the presence and absence of the type IV-A signature DinG effector helicase. The structures reveal how the effector complexes recognize the protospacer adjacent motif and target-strand DNA to form an R-loop structure. Additionally, we reveal differences between types IV-A1 and IV-A3 in DNA interactions and structural motifs that allow for in trans recruitment of DinG. Our study provides a detailed view of type IV-A mediated DNA-interference and presents a structural foundation for engineering type IV-A-based genome editing tools.
Project description:Cornelia de Lange syndrome (CdLS) is an autosomal dominant disease mainly caused by mutations in the Nipped-B-like protein (NIPBL) gene resulting in the alteration of the cohesin pathway. Here, we generated human induced pluripotent stem cells (hiPSCs) from a CdLS patient carrying a mutation in the NIPBL gene, c.5483G>A, and tested CRISPR-Cas based approaches to repair the genetic defect. We applied an efficient and precise method of gene correction through CRISPR-Cas induced homology directed repair (HDR), which allowed the generation of hiPSC clones with regular karyotype and preserved stemness. The efficient and precise gene replacement strategy developed in this study can be extended to the modification of other genomic loci in hiPSCs. Isogenic wild-type and mutated hiPSCs produced with the CRISPR-Cas technology are fundamental CdLS cellular models to study the disease molecular determinants and identifying therapeutic targets.
Project description:CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, III) each recognize and target destruction of foreign invader nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr proteins (Type III-B) associated with one of two primary size forms of crRNAs and functions through homology-dependent cleavage of target RNAs. In the current study, we have isolated and characterized two additional native Pfu CRISPR-Cas complexes containing either Csa (Type I-A) or Cst (Type I-G) proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by tandem mass spectrometry and immunoblotting and the crRNAs by RNA deep sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from each of seven total CRISPR loci and contain identical 5’ ends (8-nt CRISPR RNA repeat-derived 5’ tag sequences) but heterogeneous 3’ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3’ end processing pathways following primary cleavage of common pre-crRNAs. We predict that the newly identified Pfu Type I-A (Csa) and Type I-G (Cst)-containing crRNPs, like other previously characterized Type I CRISPR-Cas effector complexes, each function by carrying out crRNA-guided DNA targeting of invading mobile genetic elements. Taken together, our in-depth characterization of the three isolated native complexes provides clear evidence for three compositionally distinct crRNPs containing either Cmr, Csa, or Cst Cas proteins that together make up an impressive arsenal of CRISPR-Cas defense for a single organism. 4 Samples: Protein-associated small RNAs
Project description:We recently identified variants in PRDM15 in affected individuals with proteinuric kidney disease. To determine the downstream pathways mediated by PRDM15 knock-down, PRDM15 knock-out immortalized podocyte cell lines were generated using CRISPR/Cas genome editing. Two different guide RNAs were utilized to generate two different cell lines, while a scramble guide RNA was utilized as control. We performed RNAseq and identified 151 differentially regulated genes, which coalesced upon pathways involved in renal development.