Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:Microbiome analysis was performed on the patient samples collected pre-FMT and on days after FMT, and on samples collected from the FMT donor. Genomic bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool kit (Qiagen, Hilden, Germany), with the addition of a bead-beating lysis step. Genomic 16S ribosomal-RNA V4 variable regions were amplified and sequenced on the Illumina MiSeq platform.
Project description:Rationale: Physical exercise is essential for skeletal integrity and bone health. The gut microbiome, as a pivotal modulator of overall physiologic states, is closely associated with skeletal homeostasis and bone metabolism. However, the potential role of intestinal microbiota in the exercise-mediated bone gain remains unclear. Methods: We conducted microbiota depletion and fecal microbiota transplantation (FMT) in ovariectomy (OVX) mice and aged mice to investigate whether the transfer of gut ecological traits could confer the exercise-induced bone protective effects. The study analyzed the gut microbiota and metabolic profiles via 16S rRNA gene sequencing and LC-MS untargeted metabolomics to identify key microbial communities and metabolites responsible for bone protection. Transcriptome sequencing and RNA interference were employed to explore the molecular mechanisms. Results: We found that gut microbiota depletion hindered the osteogenic benefits of exercise, and FMT from exercised osteoporotic mice effectively mitigated osteopenia. Comprehensive profiling of the microbiome and metabolome revealed that the exercise-matched FMT reshaped intestinal microecology and metabolic landscape. Notably, alterations in bile acid metabolism, specifically the enrichment of taurine and ursodeoxycholic acid, mediated the protective effects on bone mass. Mechanistically, FMT from exercised mice activated the apelin signaling pathway and restored the bone-fat balance in recipient MSCs. Conclusion: Our study underscored the important role of the microbiota-metabolic axis in the exercise-mediated bone gain, heralding a potential breakthrough in the treatment of osteoporosis.
Project description:Purpose: To determine whether previously observed behavioral differences in alcoholic human patients after fecal microbiota transplantation (FMT) could be transferred to mice. Methods: Fecal microbiota samples from a previously published phase 1, double-blind, randomized clinical trial of AUD-related cirrhosis patients were used to colonize germ-free mice. Fecal material was transferred to 10-15-week-old GF C57BL/6 male mice by daily gavage for 3 day. The mice were housed in sterile individually filtered cages for 15 days after which stool was collected and then they underwent the alcohol preference experiment using 2-bottle choice drinking (water and 20% ethanol v/v). Microbial DNA was isolated from stool samples by sequencing the V1 and V2 variable regions of the bacterial 16S rRNA gene were sequenced using Multitag fusion primers and sequenced on an Ion Torrent PGM next-generation sequencer. Intestinal mucosa, liver, and prefrontal cortex tissue was collected from mice at time of sacrifice. RNAseq was used to measure gene expression in pre-FMT and post-FMT samples. RNAseq data were aligned to the mouse genome (GRCm39) using STAR (version 2.7.9a) and counts were generated with HTSeq (version 0.13.5). Genes with very low counts across the study (defined as fewer than 10 counts in more than 2 samples) were eliminated before differential expression analysis. Low count genes were determined separately for each tissue type. The DESeq2 package for R was then used to measure differential expression between pre-FMT and post-FMT mice in the intestine, liver, and PFC. Benjamini and Hochberg False Discovery Rate (FDR) was used to correct for multiple testing with FDR ≤ 0.2 considered significant. Results: Mice colonized with post-FMT stool significantly reduced ethanol acceptance, intake and preference versus pre-FMT colonized mice. Microbial taxa that were higher in post-FMT humans were also associated with lower alcohol intake and preference in mice. RNAseq further showed that differential gene expression, post-FMT, occurred in the intestine rather than the liver and prefrontal cortex. Conclusions: FMT leads to significant change in gut microbiome population, which in turn alters gene expression in the intestine. FMT also significantly affects alcohol consumption. The microbiotal-intestinal interface may alter gut-liver-brain axis and reduce alcohol consumption in humans.
Project description:The mechanism by which aging induces aortic aneurysm and dissection (AAD) remains unclear. A total of 430 subjects were recruited for screening of differentially expressed plasma microRNAs. We found that miR-1204 was significantly increased in both plasma and aorta of elder patients with AAD, and was positively correlated with age. Cell senescence induced the expression of miR-1204 through p53 interaction with plasmacytoma variant translocation 1, and miR-1204 induced vascular smooth muscle cell (VSMC) senescence to form a positive feedback loop. miR-1204 aggravated angiotensin II-induced AAD formation, and inhibition of miR-1204 attenuated β-aminopropionitrile monofumarate-induced AAD formation. Mechanistically, miR-1204 directly targeted myosin light chain kinase (MYLK) to promote VSMCs to acquire senescence-associated secretory phenotype (SASP) and lose their contractile phenotype. Overexpression of MYLK reversed miR-1204-induced VSMC senescence, SASP and contractile phenotype changes, and the decrease of transforming growth factor-β signaling pathway. Our findings suggest aging aggravates AAD via 75 miR-1204-MYLK signaling axis.
Project description:Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. The disorder of gut microbiota is involved in the pathophysiological process of various neurological diseases, and many studies have confirmed that gut microbiota is involved in the progression of PD. As one of the most effective methods to reconstruct gut microbiota, fecal microbiota transplantation (FMT) has been considered as an important treatment for PD. However, the mechanism of FMT treatment for PD is still lacking, which requires further exploration and can facilitate the application of FMT. As a model organism, Drosophila is highly conserved with mammalian system in maintaining intestinal homeostasis. In this study, there were significant differences in the gut microbiota of conventional Drosophila colonized from PD patients compared to those transplanted from normal controls. And we constructed rotenone-induced PD model in Drosophila followed by FMT in different groups, and investigated the impact of gut microbiome on transcriptome of the PD host. Microbial analysis by 16S rDNA sequencing showed that gut microbiota could affect bacterial structure of PD, which was confirmed by bacterial colonization results. In addition, transcriptome data suggested that gut microbiota can influence gene expression pattern of PD. Further experimental validations confirmed that lysosome and neuroactive ligand-receptor interaction are the most significantly influenced functional pathways by PD-derived gut microbiota. In summary, our data reveals the influence of PD-derived gut microbiota on host transcriptome and helps better understanding the interaction between gut microbiota and PD through gut-brain axis. The present study will facilitate the understanding of the mechanism underlying PD treatment with FMT in clinical practice.
Project description:The spatial organization of protein synthesis in the eukaryotic cell is essential for maintaining the integrity of the proteome and the functioning of the cell. Translation on free polysomes or on ribosomes associated with the endoplasmic reticulum has been studied for a long time. More recent data have revealed selective translation of mRNAs in other compartments, in particular at the surface of mitochondria. Although these processes have been described in many organisms, in particular in plants, the mRNA targeting and localized translation mechanisms remain poorly understood. Here, the Arabidopsis thaliana Friendly (FMT) protein is shown to be a cytosolic RNA binding protein that associates with cytosolic ribosomes at the surface of mitochondria. As previously shown (El Zawily et al., 2014), FMT knock-out delays seedling development and causes mitochondrial clustering. The mutation also disrupts the mitochondrial proteome, and the localization of nuclear transcripts encoding mitochondrial proteins at the surface of mitochondria. These data indicate that FMT participates in the localization of mRNAs and their translation at the surface of mitochondria.
Project description:The mechanism by which aging induces aortic aneurysm and dissection (AAD) remains unclear. We found that miR-1204 was significantly increased in both plasma and aorta of elder patients with AAD, and was positively correlated with age. Cell senescence induced the expression of miR-1204 through p53 interaction with plasmacytoma variant translocation 1, and miR-1204 induced vascular smooth muscle cell (VSMC) senescence to form a positive feedback loop.