ABSTRACT: A Metagenomic investigation of the faecal RNA virome structure of asymptomatic chickens obtained from a commercial farm in Durban, KwaZulu-Natal province, South Africa.
Project description:Five healthy Laoshan dairy goats (four years old, third lactation) from Qingdao Laoshan dairy goat primary farm (Shandong Province, China) were used. The mammary gland samples were collected surgically after general anaesthesia using Xylazine Hydrochloride injection solution (Huamu Animal Health Products Co., Ltd. China) at corresponding lactation stage, including early, peak and late lactations.
2020-02-22 | GSE135930 | GEO
Project description:Soil fungal diversity associated with burnt vs mulched trial plots in KwaZulu-Natal Province of South Africa
Project description:Domestic chicken has been intensively studied because of its role as an efficient source of lean meat. However, commercial broilers resulting from genetic selection for rapid growth demonstrate detrimental traits, such as excess deposition of abdominal adipose tissue, metabolic disorders, and reduced reproduction. Therefore fast-growing broilers represent “obese” chickens compared to slow-growing egg layers (e.g, Leghorn) or wild strain of meat-type chickens (e.g., Fayoumi). Fayoumi chickens, originating from Egypt, represent a harder stain of chickens, which are more resistant to diseases. Leghorn chickens are the original breed of commercial U.S layers. Both lines were maintained highly inbred by Iowa State University poultry geneticists with an inbreeding coefficient higher than 0.95. Both Fayoumi and Leghorn demonstrated lean phenotype compared to broilers, and these three lines of chickens are genetically distant from each other.
Project description:Gray leaf spot (GLS) disease of maize is caused by the fungus Cercospora zeina in African countries, such as South Africa. The plant material was from maize inbred line B73-QTL, which was introgressed with a QTL region for resistance to GLS from the maize inbred line CML444 (Berger et al (2014) BMC Genetics 15 60 www.biomedcentral.com/1471-2156/15/60 ). This QTL was named 10G2_GLS and 10H_GLS from two field trials in KwaZulu-Natal province, South Africa in that study. B73-QTL plants were planted in the field, and subjected to natural infection with C. zeina. This was the same field trial as B73 plants that were sampled for RNAseq and the data reported in Swart et al (2017) Mol Plant Microbe Interact 30 710-724 (2017)(GSE94442). Samples were collected from lower leaves with moderate GLS lesions and younger upper leaves of the same B73-QTL plants with very few immature GLS lesions. The first aim of the experiment was to compare the maize transcriptomes during C.zeina challenge between B73 (from GSE94442 data) and B73-QTL plants (this study). The second aim was to identify novel transcripts expressed from the QTL region, which may underlie the quantitative disease resistance to GLS. The third aim was to identify C. zeina genes expressed in planta during infection.
Project description:The transition period is the most critical stage in the lactation cycle of dairy cattle. During this period, cows are subjected to high levels of oxidative stress. One way of managing this stress is through mineral supplementation with antioxidant micronutrients. The aim of this study was to evaluate the gene expression of transition dairy cows supplemented with the antioxidant trace elements copper (Cu), zinc (Zn), manganese (Mn) and selenium (Se). The study was carried out in a commercial Holstein dairy farm located in General Belgrano, province of Buenos Aires, Argentina. Cows (n=200) were randomly assigned to either a supplemented or a control group. Blood samples were obtained seven days after calving and used to determine superoxide dismutase and glutathione peroxidase activity, antioxidant capacity and thiobarbituric acid reactive substances. Additionally, RNA-sequencing analysis was performed. The oxidative stress index differed significantly between groups, despite only two differentially expressed genes which codify for second messengers (adjusted p value < 0.05). This would suggest that trace mineral supplementation of transition dairy cows would not induce changes in gene expression profiles in pathways associated with oxidative stress and immune function, since their expression is already high in response to the high oxidative stress levels and the dietary changes associated with this period. Nevertheless, considering the role of these minerals as cofactors, a higher availability in the supplemented group would increase antioxidant enzyme activity.
Project description:To survey avian leukosis virus subgroup J (ALV-J) integration in myeloid leukosis (ML) of chicken, we developed an ALV-J insertional identification platform based on hybrid-capture target enrichment and next-generation sequencing (NGS). In addition, we used gene expression profiling and bioinformatics to associate integration sites to transcriptional activity and to genetic features of the tumor cell genome. We selected six cases of ALV-J positive and diagnosed as ML for integration sites identify from commercial broiler breeder flocks in Guangdong Province of China between November 2011 and March 2012. All tumors were diagnosed on the basis of characteristic gross and microscopic lesions. Furthermore, PCR tests on the genomic DNA of tissues and virus isolation assay only showed ALV-J-specific positive results in previously study. We randomly chose 4 independent liver samples from the six cases for gene expression profile analysis. And 3 ALV-negative tissue samples from specific-pathogen-free (SPF) chickens at the same age were use as negative controls. Thus a total of 7 samples were hybridized, three representing control.
Project description:Domestic chicken has been intensively studied because of its role as an efficient source of lean meat. However, commercial broilers resulting from genetic selection for rapid growth demonstrate detrimental traits, such as excess deposition of abdominal adipose tissue, metabolic disorders, and reduced reproduction. Therefore fast-growing broilers represent “obese” chickens compared to slow-growing egg layers (e.g, Leghorn) or wild strain of meat-type chickens (e.g., Fayoumi). Fayoumi chickens, originating from Egypt, represent a harder stain of chickens, which are more resistant to diseases. Leghorn chickens are the original breed of commercial U.S layers. Both lines were maintained highly inbred by Iowa State University poultry geneticists with an inbreeding coefficient higher than 0.95. Both Fayoumi and Leghorn demonstrated lean phenotype compared to broilers, and these three lines of chickens are genetically distant from each other. In this study, we used affymetrix microarray to profile global gene expression of three distinct genetic lines of chickens to identify functional pathways associated with leanness of domestic chickens.