Project description:T cell-based cancer immunotherapies have revolutionized cancer treatment, yet durable responses remain elusive. Here, we report that PCIF1, an RNA N6, 2’-O-dimethyladenosine (m6Am) methyltransferase, negatively regulates CD8+ T cell anti-tumor responses. Whole-body or T cell-specific Pcif1 knockout (KO) significantly reduces tumor growth in mice. Single-cell RNA sequencing reveals heightened tumor-infiltrating cytotoxic CD8+ T cells in Pcif1-deficient mice. Mechanistically, proteomic and m6Am-sequencing analyses pinpoint that Pcif1 KO elevates crucial m6Am-modified targets, specifically ferroptosis suppressor genes (Fth1, Slc3a2), and T cell activation gene Cd69, imparting resistance to ferroptosis and enhancing CD8+ T cell activation. Of note, Pcif1-deficient mice with tumors exhibit enhanced responses to anti-PD-1 immunotherapy, and Pcif1 KO CAR T cells demonstrate improved tumor control. Clinically, cancer patients with low PCIF1 expression in T cells exhibit enhanced responses to immunotherapies. These findings suggest that PCIF1 suppresses CD8+ T cell activation and targeting PCIF1 as a promising strategy to boost anti-tumor immunity.
Project description:CD8+ T cells activated by cancer immunotherapy execute tumor clearance mainly by inducing cell death through perforin-granzyme- and Fas/Fas ligand-pathways. Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent lipid peroxide accumulation. Although it was mechanistically illuminated in vitro, emerging evidence has shown that ferroptosis may be implicated in a variety of pathological scenarios. However, the involvement of ferroptosis in T cell immunity and cancer immunotherapy is unknown. Here, we find that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumor cells, and in turn, increased ferroptosis contributes to the anti-tumor efficacy of immunotherapy. Mechanistically, IFNg released from CD8+ T cells downregulates expression of SLC3A2 and SLC7A11, two subunits of glutamate-cystine antiporter system xc-, restrains tumor cell cystine uptake, and as a consequence, promotes tumor cell lipid peroxidation and ferroptosis. In preclinical models, depletion of cyst(e)ine by cyst(e)inase in combination with checkpoint blockade synergistically enhances T cell-mediated anti-tumor immunity and induces tumor cell ferroptosis. Thus, T cell-promoted tumor ferroptosis is a novel anti-tumor mechanism. Targeting tumor ferroptosis pathway constitutes a therapeutic approach in combination with checkpoint blockade.
Project description:We identify that GSH maintains the function of CD8+ T cell and GSH metabolism is interacting with A2AR signaling pathway to reshape the metabolism and anti-function in CD8+ T cell. We found A2AR signaling blockade leads to the upregulation of GSH metabolism related genes and loss of the genes abolishes the benefits from A2AR antagonist on CD8+ T cells. Considering to the essential role of GSH metabolism in ferroptosis, we combined the potent ferroptosis inhibitor liproxstatin-1 (Lip-1) and A2AR antagonist (SCH58261) to treat CD8+ T cells. Notably, our combination therapy significantly promotes the anti-tumor immunity of CD8+ T cells with delayed tumor growth in tumor bearing mice.
Project description:The master transcriptional regulator T cell factor 1 (TCF1) is required for the anti-tumor functions of memory and stem-like CD8+ T cells. However, how TCF1 partners with other transcription factors to orchestrate the gene activation program critical for anti-tumor immunity remains poorly understood. Here we show that negative elongation factor B (NELFB), an RNA polymerase II pausing factor, cooperates with TCF1 in T cell responses to cancer. Genetic ablation of mouse Nelfb in mature T lymphocytes severely impaired anti-tumor immunity responding to both primary tumor challenge and tumor antigen-mediated vaccination. NELFB depletion resulted in more exhausted, and reduced memory, T cell populations, whereas its ectopic expression boosted host anti-tumor immunity and efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy. Mechanistically, NELFB is physically associated with TCF1 and recruited preferentially to TCF1-enriched transcriptional enhancers and promoters in CD8+ T cells. Nelfb ablation significantly restricted chromatin accessibility to these TCF1-associated loci. Thus, NELFB is a previously unrecognized functional partner of TCF1 that potentiates the chromatin openness of TCF1-targeting regulatory elements. Our findings also suggest that augmenting NELFB expression in CD8+ T cells may improve therapeutic outcomes of anti-cancer CAR-T immunotherapies.
Project description:TGFb signaling is a major pathway associated with poor clinical outcome in patients with
advanced metastatic cancers and non-response to immune checkpoint blockade, particularly in the immune-excluded tumor phenotype. While previous pre-clinical studies demonstrated that converting tumors from an excluded to an inflamed phenotype and curative anti-tumor immunity require attenuation of both PD-L1 and TGFb signaling, the underlying cellular mechanisms remain unclear. Recent studies suggest that stem cell-like CD8 T cells (TSCL) can differentiate into non-exhausted CD8 T effector cells that drive durable anti-tumor immunity. Here, we show that TGFb and PD-L1 restrain TSCL expansion as well as replacement of progenitor exhausted and dysfunctional CD8 T cells with non-exhausted IFNghi CD8 T effector cells in the tumor microenvironment (TME). Blockade of TGFb and PD-L1 generated IFNghi CD8 T effector cells with enhanced motility, enabling both their accumulation in the TME and increased interaction with other cell types. Ensuing IFNg signaling markedly transformed myeloid, stromal, and tumor niches to yield a broadly immune-supportive ecosystem. Blocking IFNg completely abolished the effect of anti-PD-L1/ TGFb combination therapy. Our data suggest that TGFb works in concert with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells with fresh CD8
T effector cells, thereby maintaining the CD8 T cell compartment in a dysfunctional state.
Project description:Cellular senescence is a stress response that activates innate immunity. However, the interplay between senescent cells and the adaptive immune system remains largely unexplored. Here, we show that senescent cells display enhanced MHC class I (MHC-I) antigen processing and presentation. Immunization of mice with senescent syngeneic fibroblasts generates CD8 T cells reactive against both normal and senescent fibroblasts, some of them targeting senescence-associated MHC-I-peptides. In the context of cancer, we demonstrate that senescent cancer cells trigger strong anti-tumor protection mediated by antigen-presenting cells and CD8 T cells. This response is superior to the protection elicited by cells undergoing immunogenic cell death. Finally, induction of senescence in patient-derived cancer cells exacerbates the activation of autologous tumor-reactive CD8 tumor-infiltrating lymphocytes (TILs) with no effect on non-reactive TILs. Our study indicates that immunization with senescent cancer cells strongly activates anti-tumor immunity, and this can be exploited for cancer therapy.
Project description:The expansion, trafficking and functional effectiveness of adoptively transferred CD8+ T-cells play a critical role in mediating effective anti-tumor immunity. However, the mechanisms which program the highly proliferative and functional state of CD8+ T-cells are not completely understood. We hypothesized that IL-12, a cytokine commonly induced by TLR activation, could enhance T-cell priming by altering responsiveness to antigen and cytokines. Priming of tumor specific CD8+ T-cells in the presence of IL-12 induced the acquisition of a 'polyfunctional' effector response and increased the generation of memory cells. Moreover, IL-12 priming also promoted high levels of the IL-2 receptor alpha-chain (CD25) and robust IL-2 mediated activation of STAT5. This sensitivity to IL-2 translated into enhanced in vivo proliferation of adoptively transferred CD8+ T-cells. Furthermore, real-time, in vivo imaging of T-cell trafficking confirmed the ability of IL-12 priming to drive in vivo proliferation. IL-12 priming enhanced the anti-tumor function of adoptively transferred cells by reducing established subcutaneous tumor burden, and significantly increasing survival in an established intracranial tumor model. Finally, IL-12 priming of human PBMCs generates tumor specific T-cells phenotypically and functionally similar to IL-12 primed Pmel-1 T-cells. These results highlight IL-12 as an important mediator of CD8+ T-cell effector function and anti-tumor immunity. We primed Pmel-1 TCR transgenic CD8+ T-cells with cognate antigen and either IL-2 or IL-12 and compared their gene expression profiles. This was used to identify pathways or genes necessary for anti-tumor activity in vivo. RNA was isolated from Pmel-1 T-cells primed with antigen and cytokine for 6 days and hybridized to Affymetrix arrays.