Project description:Investigation of gene expression level differences in Culex pipiens (SB) and C. quinquefasciatus (JHB) at three time points (8, 16, and 24 hours post-exposure) during the early pupal state in standard (25°C; 16 h light/8 h dark) and diapause-inducing (18°C; 8 h light/16 h dark) conditions. A forty-eight chip study (4 Expr12x135K slides) using cDNA from total RNA collected from two species in the Culex pipiens complex at 3 time-points during the early pupal stage to study gene expression differences between standard (25°C; 16 h light/8 h dark) and diapause-inducing (18°C; 8 h light/16 h dark) conditions, and between Culex pipiens (diapause) and C. quinquefasciatus (no diapause). Each chip measures the expression level of 18,692 protein coding genes, with 3 probes per gene and two-fold technical redundancy. Each of the 12-plex slides was used for one of four biological replicates. Probes were designed using the C.quinquefasciatus CpipJ1.2 geneset in VectorBase.
Project description:Culex pipiens molestus and Cx. p. quinquefasciatus are the members of Culex pipiens Complex, but they display relatively large differences in behavior and physiological responses. We compared the genes of these mosquitoes to identify those that were differentially expressed in each subspecies. Such genes could play important roles in subspecies-specific blood feeding or oviposition behavior. Culex pipiens molestus and Cx. p. quinquefasciatus females were undertaken Illumina RNA sequencing.
Project description:The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. Total small RNAs (miRNAs, siRNAs, piRNAs, etc.) were isolated and sequenced from the heads of sensor strain Aedes aegypti mosquitoes, or from the whole bodies of CHIKV-infected Aedes albopictus mosquitoes 8 hours post infection. Mosquitoes were grown at 18C or 28C in replicates of 1 (Ae. aegypti) or 3 (Ae. albopictus).
Project description:Culex pipiens molestus and Cx. p. quinquefasciatus are the members of Culex pipiens Complex, but they display relatively large differences in behavior and physiological responses. We compared the genes of these mosquitoes to identify those that were differentially expressed in each subspecies. Such genes could play important roles in subspecies-specific blood feeding or oviposition behavior.
Project description:Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world’s population at risk. Blocking virus replication in mosquitoes rather than in humans serves as a promising approach to prevent arbovirus transmission, which requires in-depth knowledge of mosquito immunity. By integrating multi-omics data, we identified that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topological associated domain. This Hsf1-sHsp cascade acts as an early response against chikungunya virus (CHIKV) infection and shows pan-antiviral activity in three vector mosquitoes, Aedes aegypti, Aedes albopictus, and Anopheles gambiae. We then assessed the baseline expression of sHsp genes in different tissues of female Ae. aegypti using RNA-seq, and we observed a highly dynamic expression pattern of sHsp genes that varied dramatically across different tissues. Interestingly, sHsp genes were expressed at low levels in two main barrier tissues, the midgut and salivary glands, compared to other tissues such as the crop. Importantly, activation of Hsf1 led to a reduced CHIKV infection rate in adult Ae. aegypti mosquitoes, demonstrating Hsf1 as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Project description:A protein pilot dataset detecting Wolbachia proteins from protein extracted from dissected infected Culex pipiens mosquito ovaries. The experiment was based of an iTRAQ experiment comparing infected and uninfected ovarian tissues and has been usefull in characterizing the wPip (Buckeye) ovarian proteome.
Project description:Rift valley fever (RVF) is an emerging zoonotic disease and it is caused by Rift valley fever phlebovirus (RVFV). This virus is commonly transmitted in endemic areas between wild ruminants and mosquitoes, mainly by mosquitoes of Culex and Aedes genus. Starting from 2000, several outbreaks have been reported outside the African continent, in countries facing the Mediterranean Sea, such as Saudi Arabia. The available vaccines for ruminants present limited efficacy or residual pathogenic effects. Consequently, new strategies are urgently required to limit the expansion of this zoonotic virus. The main objective of this work is to investigate the molecular responses of Culex pipiens to RVFV focusing mainly on genes implicated in the classical innate immunity pathways, RNAi mechanism and apoptosis process in order to elucidate the implicated genes in viral infection. The immune altered genes here described could be potential targets to control RVFV infection in mosquitoes. Some of the genes related to the immune defense response were previously described in others mosquito-arbovirus models, as also in Drosophila and human. To our knowledge, this study elucidates for the first time the Cx. pipiens-RVFV interaction in terms of defense infection-response, which was largely under studied and provides information to develop new approaches to prevent and control the expansion of the virus in the future.
Project description:A pyrethroid-resistant strain of Culex quinquefasciatus, JPal-per, exhibits 2500-fold greater larval resistance to permethrin than the insecticide-susceptible strain Ogasawara. An increased microsome monooxygenase metabolism is involved in the resistance mechanism. Microarray analysis revealed altered expressions of cytochrome P450 genes in the fourth instar larvae of JPal-per compared to those in OGS. An oligo DNA array was designed for 62 different cDNA segments encoding unique P450 isoforms of the Cx. pipiens complex. Other probes for non-P450 Cx. pipiens complex genes were also mounted on the array.