ABSTRACT: Enhancement of bio-promoters on Cr(VI) inhibited sulfur-driven denitrification: repairing damage, accelerating electron transfer, and reshaping microbial collaboration
Project description:Chromium (Cr) is an important environmental contaminant and also a genotoxic metal ion at high concentration, but its molecular mechanisms and signalling pathways of action in plants is still poorly unraveled. To help characterize the mechanism of molecular and signalling of rice, we present the large-scale, transcriptomic analysis of rice root responses to Cr(VI). We examined the possible involvement of reactive of reactive oxygen species (ROS) and calcium in Cr(VI) signaling transduction pathways, as well as the effect of Cr (VI) on CDPK and MAPK activity. Specially, we used the microarray assay to assess different stage Cr (VI) induced alteration in rice gene expression. This gene discovery effort will help expand our understanding of cellular responses to Cr (VI) treatment, and will identify candidate genes for enhancement of Cr resistance in crop.
Project description:Chromium (Cr) is an important environmental contaminant and also a genotoxic metal ion at high concentration, but its molecular mechanisms and signalling pathways of action in plants is still poorly unraveled. To help characterize the mechanism of molecular and signalling of rice, we present the large-scale, transcriptomic analysis of rice root responses to Cr(VI). We examined the possible involvement of reactive of reactive oxygen species (ROS) and calcium in Cr(VI) signaling transduction pathways, as well as the effect of Cr (VI) on CDPK and MAPK activity. Specially, we used the microarray assay to assess different stage Cr (VI) induced alteration in rice gene expression. This gene discovery effort will help expand our understanding of cellular responses to Cr (VI) treatment, and will identify candidate genes for enhancement of Cr resistance in crop. Two-condition experiment, short exposures and long exposures. Comparison of mock control and rice seedlings treated with 50 μM Cr(VI) during short (pooled from 1- and 3-h treatments), as compared to long (24 h) exposures.; Biological replicates: 3 control replicates (short and long exposures), 3 Cr(VI)-treated replicates (short and long exposures).
Project description:Suspended cell studies were performed to document whole-genome transcriptional profiles as a function of Cr(VI) reduction under different electron accepting conditions. Cell suspension studies were performed in 250 mL serum bottles for two conditions: 1) under anoxic condition with lactate as carbon source and nitrate as electron acceptor, and 2) under aerobic condition with lactate as carbon source and oxygen as electron acceptor. The initial Cr(VI) and nitrate concentrations were 1000 μg/L and 40 mg N/L, respectively. Samples from both the conditions were collected after 5 hours and the cell pellet was saved at -80°C.
2021-08-11 | GSE181731 | GEO
Project description:Recovery behavior of denitrification by bio-promotors in a Cr(VI) inhibited biofilm reactor
| PRJNA650010 | ENA
Project description:Cr(VI) inhibitory mechanism on sulfur-based denitrification: bio-toxicity and bio-electron characteristic and microbial evolutions
Project description:Columns containing Hanford 100H aquifer sediment continuously infused with 5 mM lactate, 5 uM Cr(VI), and either 7.5 mM sulfate or 12 mM nitrate as an electron acceptor.
Project description:Columns containing Hanford 100H aquifer sediment continuously infused with 5 mM lactate, 5 uM Cr(VI), and either 7.5 mM sulfate or 12 mM nitrate as an electron acceptor. A two-chip study using total RNA extracted from unfiltered effluent from columns (nitrate or sulfate infused).
Project description:Hexavalent chromium (Cr(VI)) is a highly toxic contaminant, some bacteria are able to transform it to less toxic and less soluble trivalent chromium (Cr(III)). Klebsiella sp. strain AqSCr, isolated from Cr(VI)-polluted groundwater, reduces Cr(VI) both aerobically and anaerobically, and resists up 35 mM of Cr(VI); Subculturing of AqSCr in the presence of Cr(VI) conduces to adaptation. In this study, we performed RNA-Seq of Cr(VI) adapted stage, finding 255 genes upregulated and 240 downregulated with respect to controls without Cr(VI). Genes differentially expressed are mostly associated with oxidative stress response, DNA repair and replication, sulfur starvation response, envelope-osmotic stress response, fatty acid metabolism, ribosomal subunits and energy metabolism. Among them, genes not previously associated with chromium resistance as cybB, encoding a putative superoxide oxidase, gltA2, encoding an alternative citrate synthase, and des, encoding a fatty acid desaturase were upregulated. The alternative sigma factors fecl, rpoE and rpoS were upredgulated in Cr(VI) adapted cells, then they participate in orchestate the Cr(VI)-resistance mechanisms in AqSCr strain