Project description:Understanding the biogeographical patterns and underlying drivers of microbial functional diversity is essential for anticipating climate change impacts on ecosystem functioning worldwide. However, this matter remains scarcely addressed in freshwater ecosystems. Using the high-throughput gene array GeoChip 4.0, we show that functional gene alpha diversity and compositon differ across mountains, alpha diversity declines towards high elevations and compositional turnover increases with larger elevational distances. Both continental- and mountain-scale patterns were primarily driven by climatic variables.
2020-06-22 | GSE128826 | GEO
Project description:Microbial diversity on Nanhai No. 1 shipwreck
Project description:The plant pathogen Agrobacterium tumefaciens attaches to and forms biofilms on both biotic and abiotic surfaces. The transition between free-living, planktonic A. tumefaciens and multicellular biofilms is regulated by several well-defined environmental and nutritional inputs, including pH, oxygen tension, and phosphate concentration. In many bacterial species limiting iron levels inhibit attachment and biofilm formation. In several systems intracellular levels of the redox-active manganous (Mn2+) and ferrous (Fe2+) ions are interrelated and have tight corresponding regulation with respect to one another. We show that limiting manganese concentrations elicit similar growth and biofilm phenotypes to those seen under iron-limiting conditions. Microarray analysis comparing gene expression in manganese-replete versus manganese-limiting conditions identified a small number of differentially regulated transcripts. These results indicate that the redox-active manganous and ferrous ions are required for wild-type levels of growth and biofilm formation, and that the manganese-dependent response is primarily post-transcriptional and complementary to, but not redundant with, the iron-dependent response.
Project description:Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide VPS, matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Single-cell force spectroscopy revealed that proteins critical for biofilm formation, OmpU, the matrix proteins RbmA, RbmC, Bap1, and VPS, contribute to cell-surface adhesion forces at differing efficiency, with VPS showing the highest efficiency whereas Bap1 showing the lowest efficiency. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may provide new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of V. cholerae.
Project description:Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide VPS, matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Using single-cell force spectroscopy, we further showed that OmpU, the matrix proteins RbmA, RbmC, and Bap1, and VPS contribute to cell-surface adhesion forces, which are critical for biofilm formation. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may open up new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of Vibrio cholerae.
Project description:The plant pathogen Agrobacterium tumefaciens attaches to and forms biofilms on both biotic and abiotic surfaces. The transition between free-living, planktonic A. tumefaciens and multicellular biofilms is regulated by several well-defined environmental and nutritional inputs, including pH, oxygen tension, and phosphate concentration. In many bacterial species limiting iron levels inhibit attachment and biofilm formation. In several systems intracellular levels of the redox-active manganous (Mn2+) and ferrous (Fe2+) ions are interrelated and have tight corresponding regulation with respect to one another. We show that limiting manganese concentrations elicit similar growth and biofilm phenotypes to those seen under iron-limiting conditions. Microarray analysis comparing gene expression in manganese-replete versus manganese-limiting conditions identified a small number of differentially regulated transcripts. These results indicate that the redox-active manganous and ferrous ions are required for wild-type levels of growth and biofilm formation, and that the manganese-dependent response is primarily post-transcriptional and complementary to, but not redundant with, the iron-dependent response. Four biological replicates, independent RNA preparations, two dye swaps.
Project description:Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity overtime. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in HotLake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gamma proteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities.
2014-06-24 | MTBLS75 | MetaboLights
Project description:microbial community diversity in piglets fed ferrous glycine chelate