Project description:The Aurora-A inhibitor alisertib shows encouraging activities in clinical trials against multiple malignances including advanced breast cancer. However, its mechanism of action remains unclear, especially regarding how the inflammatory microenvironment is involved in the efficacy of alisertib. Here, we demonstrated that Aurora-A inhibition directly reshapes the immune microenvironment through removal of tumor-promoting myeloid cells and enrichment of anti-cancer T lymphocytes, which restores a tumor-suppressive microenvironment and significantly contributes to the regression of murine mammary tumors. Mechanistically, the Aurora-A inhibitor effectively eliminated myeloid cells including myeloid-derived suppressor cells (MDSCs) and macrophages in tumors by triggering apoptosis of these cells. Further, Aurora-A inhibition could disrupt the immunosuppressive functions of MDSCs through inhibiting Stat3 mediated ROS production. These alterations led to significant increases in the proportion and the number of CD8+ and CD4+ T lymphocytes, which efficiently inhibited the proliferation of tumor cells. In summary, these data revealed that in addition to suppressing the proliferation of tumor cells, Aurora-A inhibitor directly modulates and restores an anti-tumor immune-microenvironment in breast cancer. Intriguingly, Aurora-A inactivation combined with PD-L1 blockade showed synergistic efficacy in the treatment of mammary tumors, providing an effective strategy for clinical trials of chemo-immunotherapy in breast cancer.
Project description:In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T cell non-inflamed tumors (‘cold tumors’) are associated with tumor cell intrinsic Wnt/β-catenin activation, and are resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the ‘cold tumor’ phenotype and identifying new effective immunotherapies are challenges in melanoma. In a well-established preclinical melanoma model driven by β-catenin, we found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and matricellular proteins. Its inhibition primes the microenvironment, and together with blockade of the macrophage checkpoint CD47, but not with anti-PD-1, results in synergistic anti-tumor responses. This study brings B7-H3 to the forefront as inducing a suppressive microenvironment when overexpressed, and it’s co-targeting with CD47 as a novel combination of immune checkpoint inhibitors in melanoma that calls for testing in clinical trials.
Project description:In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T cell non-inflamed tumors (‘cold tumors’) are associated with tumor cell intrinsic Wnt/β-catenin activation, and are resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the ‘cold tumor’ phenotype and identifying new effective immunotherapies are challenges in melanoma. In a well-established preclinical melanoma model driven by β-catenin, we found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and matricellular proteins. Its inhibition primes the microenvironment, and together with blockade of the macrophage checkpoint CD47, but not with anti-PD-1, results in synergistic anti-tumor responses. This study brings B7-H3 to the forefront as inducing a suppressive microenvironment when overexpressed, and co-targeting with CD47 as a novel combination of immune checkpoint inhibitors in melanoma that calls for testing in clinical trials.
Project description:In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T cell non-inflamed tumors (‘cold tumors’) are associated with tumor cell intrinsic Wnt/β-catenin activation, and are resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the ‘cold tumor’ phenotype and identifying new effective immunotherapies are challenges in melanoma. In a well-established preclinical melanoma model driven by β-catenin, we found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and matricellular proteins. Its inhibition primes the microenvironment, and together with blockade of the macrophage checkpoint CD47, but not with anti-PD-1, results in synergistic anti-tumor responses. This study brings B7-H3 to the forefront as inducing a suppressive microenvironment when overexpressed, and co-targeting with CD47 as a novel combination of immune checkpoint inhibitors in melanoma that calls for testing in clinical trials.
Project description:In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T cell non-inflamed tumors (‘cold tumors’) are associated with tumor cell intrinsic Wnt/β-catenin activation, and are resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the ‘cold tumor’ phenotype and identifying new effective immunotherapies are challenges in melanoma. In a well-established preclinical melanoma model driven by β-catenin, we found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and matricellular proteins. Its inhibition primes the microenvironment, and together with blockade of the macrophage checkpoint CD47, but not with anti-PD-1, results in synergistic anti-tumor responses. This study brings B7-H3 to the forefront as inducing a suppressive microenvironment when overexpressed, and it’s co-targeting with CD47 as a novel combination of immune checkpoint inhibitors in melanoma that calls for testing in clinical trials.
Project description:In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T cell non-inflamed tumors (‘cold tumors’) are associated with tumor cell intrinsic Wnt/β-catenin activation, and are resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the ‘cold tumor’ phenotype and identifying new effective immunotherapies are challenges in melanoma. In a well-established preclinical melanoma model driven by β-catenin, we found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and matricellular proteins. Its inhibition primes the microenvironment, and together with blockade of the macrophage checkpoint CD47, but not with anti-PD-1, results in synergistic anti-tumor responses. This study brings B7-H3 to the forefront as inducing a suppressive microenvironment when overexpressed, and it’s co-targeting with CD47 as a novel combination of immune checkpoint inhibitors in melanoma that calls for testing in clinical trials.
Project description:Innate immune checkpoint has emerging as a highly potential target for cancer immunotherapy in recent years. The CD47-SIRPα axis is the best-studied innate checkpoint in cancer. However, the transcription profile of tumor cell duiring CD47-SIRPα blockade therapy remains unclear.
Project description:Type I interferons (IFN-Is) have been well recognized for their roles in immune cells in tumor immunotherapy. However, their direct effects on tumor cells are less understood. Oxidative phosphorylation (OXPHOS) is typically latent in tumor cells. However, whether OXPHOS can be targeted for immunotherapy remains unclear. Here, we found that tumor cell responsiveness to IFN-Is is essential for CD47-SIRPα blockade immunotherapy. Interestingly, IFN-Is directly reprogram tumor cell metabolism by activating OXPHOS for ATP production via ISG15. ATP extracellular release is also enhanced by IFN-Is via autophagy. Tumor cells with a genetic deficiency in OXPHOS or autophagy were resistant to CD47-SIRPα blockade. ATP released upon CD47-SIRPα blockade primes the anti-tumor T cell response via ATP-P2X7 receptor-mediated dendritic cell activation. Further combination with inhibitors of ATP-degrading ectoenzymes, CD39 and CD73, showed synergistic anti-tumor effects. Together, these data reveal the unrecognized mechanisms of IFN-Is on tumor cell metabolic reprograming in tumor immunotherapy and provide novel strategies harnessing this pathway for enhanced efficacy of CD47-SIRPα blockade.