Project description:Plant roots located in the upper soil layers are prone to experience high temperatures. To gain insight into the effect of high temperature on root development and functioning, we exposed five-day-old Arabidopsis thaliana seedlings grown on agar plates to 30 °C for 48 hours, and compared the gene expression profile in the root tip with that from seedlings that remained at 22 °C.
Project description:The RETINOBLASTOMA–RELATED (RBR) is a key regulator of cell proliferation and differentiation in plants, and plays an important role in maintenance of the stem cell niche in the root. We used microarray analysis to characterize the transcriptional response of Arabidopsis thaliana root tips from rRBr mutant (7 samples) against Col-0 wild type (6 samples) after 4, 6 and 10 das.
Project description:Phosphate limitation constrains plant development in natural and agricultural systems. Under phosphate-limiting conditions plants activate genetic, biochemical and morphological modifications to cope with phosphate starvation. One of the morphological modifications that plants induce under phosphate limitation is the arrest of primary root growth and it is induced by the root tip contact with low phosphate media. The sensitive to proton rhizotoxicity (stop1) and aluminium activate malate transporter 1 (almt1) mutants of Arabidopsis thaliana continue primary root growth under in vitro Pi-limiting conditions, thus, to get insight into the molecular components that control primary root growth inhibition under low phosphate conditions we extracted and sequenced mRNA from the root tips (2-3 mm from the root apex) of wild-type plants (Col-0 accession) and low-phosphate-insensitive mutants almt1 and stop1 grown under low and high phosphate conditions 5 days after germination using an RNA-seq methodology.
Project description:There are two main types of root systems in flowering plants, which are taproot systems in dicot and fibrous root systems in monocot. The cellular and molecular mechanism involved in root development are mainly from the study of dicot model Arabidopsis thaliana. However, mechanisms of root development and their conservation and divergence in monocot, which including the major crops, remain largely elusive. Here we profile the transcriptomes of more than 20,000 single cells in the root tips of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Single-cell analysis coupled with in situ hybridization identify the cell type-specific marker genes and annotate all the clusters. Comparison of single-cell transcriptome and analysis of mark gene expression suggest well-conserved molecular landscape between rice Nip and 93-11. Moreover, our analysis suggests specific functions gene expression patterns for each cell type cluster, including the hormone genes. Comparison to Arabidopsis single-cell RNA-sequencing dataset reveals extensive differences between Arabidopsis and rice cell types, and species-specific features emphasize the importance of directly studying rice root. Our study reveals transcriptome landscape of major cell types of rice root in singe-cell resolution and provides molecular insight of the cell type morphology of cell type evolution in plants.
Project description:There are two main types of root systems in flowering plants, which are taproot systems in dicot and fibrous root systems in monocot. The cellular and molecular mechanism involved in root development are mainly from the study of dicot model Arabidopsis thaliana. However, mechanisms of root development and their conservation and divergence in monocot, which including the major crops, remain largely elusive. Here we profile the transcriptomes of more than 20,000 single cells in the root tips of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Single-cell analysis coupled with in situ hybridization identify the cell type-specific marker genes and annotate all the clusters. Comparison of single-cell transcriptome and analysis of mark gene expression suggest well-conserved molecular landscape between rice Nip and 93-11. Moreover, our analysis suggests specific functions gene expression patterns for each cell type cluster, including the hormone genes. Comparison to Arabidopsis single-cell RNA-sequencing dataset reveals extensive differences between Arabidopsis and rice cell types, and species-specific features emphasize the importance of directly studying rice root. Our study reveals transcriptome landscape of major cell types of rice root in singe-cell resolution and provides molecular insight of the cell type morphology of cell type evolution in plants.
Project description:The RETINOBLASTOMAâRELATED (RBR) is a key regulator of cell proliferation and differentiation in plants, and plays an important role in maintenance of the stem cell niche in the root. We used microarray analysis to characterize the transcriptional response of Arabidopsis thaliana root tips from rRBr mutant (7 samples) against Col-0 wild type (6 samples) after 4, 6 and 10 das. Using the Affymetrix ATH1 GeneChips, we followed the transcriptional dynamics underlying the phenotypic changes due to RBR silencing we have analysed the rRbr line at early time points of development (4, 6 and 10 das) and compared to Col-0 wild-type. Biological replicates were performed for each sample and hybridized to the chips.
Project description:The plant hormone gibberellin (GA) represents an important regulator of growth and development. Early transcriptional events controlled by GA are not well characterised. Previous microarray studies have identified genes responsive to GA treatment in the whole seedling. The whole seedling represents many tissues where subtle effects of GA treatment in specific tissues may be masked. When treated with GA, an effect on the growth rate of roots was observed. More specifically, the shorter root of a GA-deficient plant can be rescued to wild-type length by the application of GA. This experiment was designed to identify GA-regulated genes in the root tips of Arabidopsis. The use of a GA-deficient mutant provides a greater potential to identify genes responding to GA treatment. Root tips are ideally suited for the quick uptake of the hormone treatment. There will be two biological replicates which will each consist of a control treatment at 0 minutes and 2 hours, as well as the experimental GA-treated 2 hour time point. This system provides an opportunity to compare gene expression between treated and non-treated root tips and allow the identification of early GA-responsive genes.
Project description:The plant hormone gibberellin (GA) represents an important regulator of growth and development. Early transcriptional events controlled by GA are not well characterised. Previous microarray studies have identified genes responsive to GA treatment in the whole seedling. The whole seedling represents many tissues where subtle effects of GA treatment in specific tissues may be masked. When treated with GA, an effect on the growth rate of roots was observed. More specifically, the shorter root of a GA-deficient plant can be rescued to wild-type length by the application of GA. This experiment was designed to identify GA-regulated genes in the root tips of Arabidopsis. The use of a GA-deficient mutant provides a greater potential to identify genes responding to GA treatment. Root tips are ideally suited for the quick uptake of the hormone treatment. There will be two biological replicates which will each consist of a control treatment at 0 minutes and 2 hours, as well as the experimental GA-treated 2 hour time point. This system provides an opportunity to compare gene expression between treated and non-treated root tips and allow the identification of early GA-responsive genes. 6 samples were used in this experiment.
Project description:The aim of this study was to determine the changes in gene expression of rice root tips when they came in to contact with a hard layer (60% wax layer). Three categories of root tips were sampled; tips before the hard layer, tips that had come into contact with the hard layer and root tips which had buckled after coming into contact with the hard layer. Two genotypes (Azucena and Bala) that vary in there ability to penetrate a hard layer were selected for a genotype comparison of gene expression at the hard layer. Keywords: Genotype comparison, root impedance response
Project description:ngs2015_05_high_temperature_root-high temp wt - characterize changes in root gene expression associated with plant growth at higher temperature - plants were grown at 21°C or 26°C, 16h light (90µE)/8h dark for 10 days before harveting roots.