Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..
Project description:Primary objectives: Characterization of the macrophage population subset that is modulated by enteric neurons
Primary endpoints: Characterization of the macrophage population subset that is modulated by enteric neurons via RNA sequencing
Project description:Purpose: Sequencing analysis of plasma cell-free RNA was performed to study the effects of space flight and microgravity environment in mice. Methods: Plasma samples were collected during the JAXA MHU-1 mission as reported previously (Shiba et al., 2017, Scientific Reports). Total RNA was purified from plasma samples and processed for sequencing analysis, to compare RNA expression profiles in ground control, space flight and artificial 1-G control groups.
Project description:Mouse of SiO2 group were instilled with silica suspension, and mouse of control group were instilled with NS. The mouse mouse were raised for 56 d, and then the ECM was harvest. We found out the main protein deposited in fabrotic lung ECM. By spatial transcriptomics, we analyzed the distribution pattern of transcripts in space. Using sc-RNA sequencing, we investigated the cell resource of IgA.
Project description:SILAC labeled human kidney cells (293 cells) or bat kidney cells (PakiT03cells)were infected with Hendra virus for 8 or 24 hours and compared to uninfected control cells. Protein identification and quantitation relied on a combination of Uniprot lists of proteins and Proteomics Informed by Transcriptomics (PIT) analysis whereby RNA extracted from the same samples was deep sequenced and the sequencing data was used to construct mRNA from which possible ORFS were inferred and used as a search space by MaxQuant.
Project description:SILAC labeled human kidney cells (293 cells) or bat kidney cells (PakiT03cells)were infected with Hendra virus for 8 or 24 hours and compared to uninfected control cells. Protein identification and quantitation relied on a combination of Uniprot lists of proteins and Proteomics Informed by Transcriptomics (PIT) analysis whereby RNA extracted from the same samples was deep sequenced and the sequencing data was used to construct mRNA from which possible ORFS were inferred and used as a search space by MaxQuant.
Project description:DNA barcodes can be used to identify single cells in a sequencing data space while optical codes can be used to track single live cells in an image data space. We have developed dual image and DNA (ID)-coding, which identifies individual single cells in both live image and sequencing data spaces. Samples provided here are relevant to proof-of-concept studies of ID-coding presented in the associated publication. DNA barcoded micro-particles were encapsulated in hydrogel droplets with or without single cells. The hydrogel droplets were then subjected to “single-droplet sequencing” where whole polyA-bearing nucleic acid components within a hydrogel droplet (i.e. mRNA from cells and synthetic DNA on beads) were concatenated by the same cell barcodes.
Project description:R. rubrum S1H inoculated on solid minimal media was sent to the ISS in September 2006 (BASE-A experiment). After 10 days flight, R. rubrum cultures returned back to Earth. These cultures were then subjected to both transcriptomic and proteomic analysis and compared with the corresponding ground control. Whole-genome oligonucleotide microarray and high throughput proteomics, which offer the possibility to survey respectively the global transcriptional and translational response of an organism, were used to test the effect of space flight. Moreover, in an effort to identify a specific stress response of R. rubrum to space flight, ground simulation of space ionizing radiation and space gravity were performed under identical culture setup and growth conditions encountered during the actual space journey. This study is unique in combining the results from an actual space experiment with the corresponding space ionizing radiation and modeled microgravity ground simulations, which lead to a more solid dissection of the different factors contribution acting in space flight conditions. Total RNA was extracted from R. rubrum S1H grown after 10 days in space flight or after 10 days in simulated ionizing radiation or simulated microgravity. Each microarray slide contained 3 technical repeats.
Project description:R. rubrum S1H inoculated on solid agar rich media was sent to the ISS in October 2003 (MESSAGE-part 2 experiment). After 10 days flight, R. rubrum cultures returned back to Earth. These cultures were then subjected to both transcriptomic and proteomic analysis and compared with the corresponding ground control. Whole-genome oligonucleotide microarray and high throughput proteomics, which offer the possibility to survey respectively the global transcriptional and translational response of an organism, were used to test the effect of space flight. Moreover, in an effort to identify a specific stress response of R. rubrum to space flight, ground simulation of space ionizing radiation and space gravity were performed under identical culture setup and growth conditions encountered during the actual space journey. This study is unique in combining the results from an actual space experiment with the corresponding space ionizing radiation and modeled microgravity ground simulations, which lead to a more solid dissection of the different factors contribution acting in space flight conditions. Total RNA was extracted from R. rubrum S1H grown after 10 days in space flight or after 10 days in simulated ionizing radiation or simulated microgravity. Each microarray slide contained 3 technical repeats.