Project description:Differentially regulated genes in rosette leaves and roots of hydroponically grown Arabidopsis thaliana Col-0 and nrt1.5-5 mutant plants were identified by microarray analyses.
Project description:We used the flu mutant of Arabidopsis and a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX) to address the interactions between different reactive oxygen species (ROS) signaling pathways. The conditional flu mutant of Arabidopsis accumulates excess protochlorophyllide in the dark within chloroplast membranes that upon illumination acts as a photosensitizer and generates singlet oxygen (1O2). Immediately after the release of singlet oxygen rapid changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by other reactive oxygen species, superoxide or hydrogen peroxide (H2O2), suggesting that different types of active oxygen species activate distinct signaling pathways. It was not known whether the pathways operate separately or interact with each other. We have addressed this problem by modulating noninvasively the level of H2O2 in plastids by means of a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX, line 14/2 PMID: 15165186). In the flu mutant overexpressing tAPX, the expression of most of the nuclear genes that were rapidly activated after the release of 1O2 was significantly higher in flu plants overexpressing tAPX, whereas in wild-type plants, overexpression of tAPX had only a very minor impact on nuclear gene expression. The results suggest that H2O2 antagonizes the 1O2-mediated signaling of stress responses as seen in the flu mutant. This cross-talk between H2O2- and 1O2-dependent signaling pathways might contribute to the overall stability and robustness of wild-type plants exposed to adverse environmental stress conditions. Experiment Overall Design: Arabidopsis thaliana rosette leaves were harvested after 2 h of reillumination following a 8h dark period for RNA extraction and hybridization on Affymetrix ATH1 microarrays. The entire experiment was performed six times, providing independent biological replicates. For each of the six experiments, all four lines, wild-type, thylakoidal ascorbate peroxidase overexpressor (over tAPX, line 14/2), flu mutant and flu plants overexpressing thylakoidal ascorbate peroxidase were grown for 3 weeks under continuous light at 90 mmol. m-2 . s-1, transferred to the dark for 8 h, and reilluminated for 120 min before the rosette leaves of at least 10 plants per line were harvested. Total RNAs from three separate biological experiments were pooled (= 1 biological rep.) for the preparation of cDNA and the subsequent synthesis of biotin-labeled complementary RNA as recommended by Affymetrix.
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:CuZn-superoxide dismutase (CuZn-SOD) and ascorbate peroxidase (APX) constitute first line of defence against oxidative stress. In the present study, PaSOD and RaAPX genes from Potentilla atrosanguinea and Rheum australe, respectively were overexpressed individually as well as in combination in Arabidopsis thaliana. We performed RNA-seq analysis of wild type and transgenic Arabidopsis thaliana overexpressing CuZn-SOD, APX and CuZn-SOD + APX under control and salt stress
Project description:Transcriptional profiling of Arabidopsis thaliana 12-days old seedlings comparing Col-0 wild type with transgenic plants with altered expression of dual-targetting plastid/mitochondrial organellar RNA-polymerase RPOTmp. Transgenic plants used for experiment were: overexpressor plants obtained by transformation of Col-0 WT plants with genetic constructs created in [Tarasenko et al., 2016] contained catalytic part of RPOTmp enzyme with transit peptides of RPOTm (mitochondrial) and RPOTp (plastid) by agrobacterial transformation; plants with complementation of RPOTmp functions in mitochondria or chloroplasts obtained from transformation of GABI_286E07 rpotmp knockout-mutant plants with genetic constructs created in [Tarasenko et al., 2016]. Goal was to determine the effects of RPOTmp knockout/overexpression on global Arabidopsis thaliana gene expression.
Project description:Chromatin and RNA were extracted from young A. thaliana Col-0 rosette leaves. Chromatin immunoprecipitation experiments were performed using commercially available antibodies and analyzed by Illumina sequencing (ChIP-seq). Transcriptome data were generated by RNA-seq.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species. Analysis of genetic element transcriptional changes in response to 6 hours of 37°C heat stress and 48 hours of recovery in Arabidopsis thaliana Col-0 and Arabidopsis lyrata MN47.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species.
Project description:SLIM1 has a well established role in regulating transcriptional responses to sulfur deficiency in Arabidopsis thaliana. In order to investigate the impact of SLIM1 expression under sufficient nutrient conditions, we generated 35S::SLIM1 over-expression lines. SLIM1OX plants were found to have larger rosette area, bolt earlier, and enter developmental senescence earlier than Col-0 and slim1KO (slim1-cr) plants. RNA-seq followed by differential expression analysis was performed on rosette tissue at three timepoints.