Project description:Histologically normal breast epithelium and stroma were laser capture microdissected from breast reduction specimens and from specimens of invasive ductal carcinoma. The objective of the study was to compare normal reduction tissues to tissues adjacent to I.D.C. to determine whether adjacent normal tissues contained expression profiles correlated with characteristics of the primary tumor and to identify markers of normal epithelium and stroma. Keywords: disease state analysis
Project description:Ductal carcinoma in situ (DCIS) is a precursor lesion that can give rise to invasive breast cancer (IBC). It has been proposed that both the nature of the lesion and the tumor microenvironment play key roles in progression to IBC. Here, laser capture microdissected tissue samples from epithelium and stroma in normal breast, pure DCIS, and pure IBC were employed to define key gene expression profiles associated with disease progression. Tumor and matching stroma were profiled for 9 DCIS patients, 10 IBC patients, and 3 normal breast. Differential gene expression was evaluated for paired normal stroma versus normal epitelium samples, paired DCIS stroma versus DCIS epitelium samples, paired IBC stroma versus IBC epitelium, IBC stroma versus DCIS stroma, and IBC epithelium versus DCIS epithelium.
Project description:Histologically normal breast epithelium and stroma were laser capture microdissected from breast reduction specimens and from specimens of invasive ductal carcinoma. The objective of the study was to compare normal reduction tissues to tissues adjacent to I.D.C. to determine whether adjacent normal tissues contained expression profiles correlated with characteristics of the primary tumor and to identify markers of normal epithelium and stroma. Experiment Overall Design: common reference design. 66 samples replicated twice as dye swaps generating 132 arrays.
Project description:Transcription profiling by array of human breast epithelium and stroma in normal reduction mammoplasty and invasive breast cancer patients
Project description:Analysis of gene expression changes in tumour epithelium (DCIS and invasive breast cancer) and stroma both immediately surrounding the lesions and more distantly. Total RNA obtained from Formalin Fixed Paraffin Embedded archival material and the individual compartments (stroma and epithelium) compared independently across the samples. Sample abbreviation key: BC = breast cancer DCIS = ductal carcinoma in situ IDC = invasive ductal carcinoma RM = remote metastasis S = stroma NS = near stroma.
Project description:Primary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type, or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value. 6 samples of stroma surrounding invasive breast primary tumors; 6 matched samples of normal stroma. 6 samples of stroma surrounding invasive prostate primary tumors; 6 matched samples of normal stroma.
Project description:Genome wide DNA methylation profiling of tumor adjacent normal tissue from patients with invasive breast cancer, as well as tissue from women undergoing reduction mammoplasty or prophylactic surgery. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 485,577 CpGs in snap frozen breast tissue. Samples included 70 tumor-adjacent normal breast tissue with invasive disease, 8 tissues from breast prophylactic patients, and 18 tissues from breast reduction patients.
Project description:Analysis of gene expression changes in tumour epithelium (DCIS and invasive breast cancer) and stroma both immediately surrounding the lesions and more distantly.
Project description:Genome wide DNA methylation profiling of tumor adjacent normal tissue from patients with invasive breast cancer, as well as tissue from women undergoing reduction mammoplasty or prophylactic surgery. The Illumina Infinium 450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 485,577 CpGs in snap frozen breast tissue. Samples included 70 tumor-adjacent normal breast tissue with invasive disease, 8 tissues from breast prophylactic patients, and 18 tissues from breast reduction patients. Bisulphite converted DNA from the 96 samples were hybridized to the Illumina Infinium 450k Human Methylation Beadchip.