Project description:Contaminants of Emerging Concern (CECs) are a class of chemicals that can spread throughout the environment causing adverse biological and ecological effects. Through the different classes of CECs, the occurrence of pharmaceutical drugs such as natural and synthetic estrogens, is well documented in the aquatic environment. In this study mussels (Mytilus galloprovincialis), chosen as model organism, were exposed to the synthetic hormone 17 α-Ethinylestradiol (EE2), the primary component in contraceptive pills. Mussels were exposed to a single concentration of EE2 ( 5 ng/L) of EE2 in a semi-static and time-dependent experiment. The total period of exposure was 28 days and the mussels were analysed 14 days (T14) and 28 days (T28) after treatment. RNA-Seq analysis showed signs of stress with significant differential expression at 99 genes (T14 compared to controls), 73 genes (T28 compared to controls) and 103 DEGs after two weeks of exposure. EE2 treatment resulted in up-regulation of 3 gene/proteins for lipid transport/metabolism and 7 gene/proteins upregulated encoding immune and antibacterial function.
Project description:Transcriptional analysis of the effects of natural environmental variation across the vertical distribution of Mytilus californianus within a single mussel bed Keywords: Environmental Response 30 Biological replicates from plots sampled at 3 different verticle tide heights above the MLLW at Strawberry Hill Oregon. 15 mussels were sampled after a mid-day emmersion event and 15 mussels were sampled after a 1 hour recovery at ambient seawater temperatures. 1 replicate per array, compared using a common reference sample. 50 Biological replicates for 5 plots sampled at 2 different verticle tide heights above the MLLW at Boiler Bay Oregon. 25 mussels were sampled after a mid-day emmersion event and 25 mussels were sampled after a 1 hour recovery at ambient seawater temperatures. Pooled RNA from 5 biological replicates from each plot per array, compared using a common reference sample.
Project description:Mussels (Mytilus galloprovincialis) were exposed during 7 and 28 days in seawater (control), seawater + acetone (solvent control, SC), and 10 micrograms per Litre of tris(1,3-dichloro-2-propyl) phosphate (TDCPP). TDCPP was added from a stock solution prepared in acetone, the volume added being 100 µL per 30 L aquaria. The same volume of acetone was added to SC aquaria. Mussel density was 20 mussels per each 30 L aquaria at the beginning of the experiment and varied between 15 ‒ 20 mussels/30 L aquaria during the 28 days exposure period. Exposure conditions were the following: T = 15.6 ± 0.7 ºC, S = 35.5 ± 0.5 ppt, pH = 7.9 ± 0.1, O2 = 7.9 ± 0.6 mg L-1 and 10:14h light:dark photoperiod. Water was renewed twice per week and mussels were fed before every water renewal with a mixture of phytoplankton representing 1% of mussel tissue dry weight.
Project description:Endogenously determined inter-individual differences in growth rate of bivalve molluscs have been widely analyzed at different organizational levels. Most studies have focused on the characterization of the physiological differences between fast (F) and slow (S) growing individuals. Although several genes have been described to be up regulated on fast growing individuals, the molecular basis underlying the mechanisms at the origin of growth variation is still poorly understood. In the present study we reared mussel spat of the species Mytilus galloprovincialis under diets below the pseudofaeces threshold (BP) and above the pseudofaeces threshold (AP). After 3 months, F and S mussels on each condition were selected, so that 4 experimental groups were obtained: FBP, SBP, FAP and SAP. We hypothesized that nurturing conditions during their growing period would modify the molecular basis of growth rate differences. However, results of feeding experiments showed that F mussels displayed higher clearance and ingestion rates and higher efficiencies of food selection prior to ingestion, as well as higher gill surface areas, irrespective of the rearing nutritional environment. To decipher molecular mechanism at the origin of growth variation, gills of the 4 mussel groups were dissected, and used for transcriptome analysis with a custom Agilent single channel microarray. Gene expression analysis revealed i) a low number (12) of genes differentially expressed associated to maintenance condition differences and ii) 117 genes differentially expressed when comparing fast and slow growing mussels (FBP + FAP vs. SBP + SAP). We further investigated this comparison: GO terms and KEGG pathway association of the differentially expressed genes allowed us to analyze the functions involved on the differentially expressed encoding. Transcriptomic differences between F and S mussels were mainly based on the up-regulation of response to stimulus, growth and cell activity Biological Process GO terms. Regarding the KEGG terms, carbohydrate metabolism and Krebs cycle were found to be up-regulated in F mussels whereas biosynthetic processes were up-regulated in S mussels. Among the differentially expressed genes that are annotated, the following ones were found to be up regulated in F mussels: i) Mucin, related to mucus secretion, known to be crucial in food acquisition and pre-ingestive selection processes in bivalves, ii) genes related to growth such as Myostatin or Insulin-like growth factor, iii) genes involved in feeding activity, such as Fibrocystin or Dynein and iv) genes involved in the energetic metabolism; Citrate synthase. S mussels mainly over-expressed genes related to immune system and defence (Leucine-rich repeat-containing protein, Metalloendopeptidase, Small heat shock protein 24, Multidrug resistance,…).The present results suggest that differences in feeding activity and in the allocation of metabolic energy between growth groups could account for the differences in growth rate in spat of Mytilus galloprovincialis. In accordance with their higher feeding rates and growth, fast growing mussels were found to mainly over-express genes involved in the development and maintenance of such activities, however, slow growing mussels needed to expend energy in immune and defence processes to ensure survival at the expense of growth rate.
Project description:Transcriptional analysis of the effects of natural environmental variation across the latitudinal range of Mytilus californianus 5 Biological replicates from 4 separate populations of mussels were compared using a common reference sample. Dye swap analysis was performed for each replicate.
Project description:The present study tried to assess transcription level effects in the digestive gland of female mussels dietarily exposed to Ag NPs and to compare such transcription profiles in two different seasons, autumn and spring, since mussels are expected to be at a different gamete developmental stage (early and advanced gametogenic stage, respectively).