Project description:The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryo lethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. Affymetrix microarray analysis and quantitative RT-PCR validation of the relative gene expression profiles in E9.5 RFC1-/- vs. RFC1+/+ embryos indicates a dramatic downregulation of multiple genes involved in erythropoiesis, and upregulation of several genes that form the cubilin-megalin multiligand endocytic receptor complex. Megalin protein expression disappears from the visceral yolk sac of RFC1-/- embryos, and cubilin protein is widely misexpressed. Inactivation of RFC1 impacts the expression of several ligands and interacting proteins in the cubilin-amnionless-megalin complex that are involved in the maternal-fetal transport of folate, vitamin B12, and other nutrients, lipids and morphogens required for normal embryogenesis. Comparison of RFC KO, wildtype normal embryos vs. RFC KO, nullizygous affected embryos Experiment Overall Design: 6 samples RFC KO mouse embryos, E9.5, folic acid treated: 3 Control, Wildtype, normal; 3 Affected, Nullizygous, CR/chorioallantoic defect; as paired-littermates with one normal and one affected embryo per set from each of three separate litters for RNA extraction and hybridization on Affymetrix microarrays.
Project description:The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryo lethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. Affymetrix microarray analysis and quantitative RT-PCR validation of the relative gene expression profiles in E9.5 RFC1-/- vs. RFC1+/+ embryos indicates a dramatic downregulation of multiple genes involved in erythropoiesis, and upregulation of several genes that form the cubilin-megalin multiligand endocytic receptor complex. Megalin protein expression disappears from the visceral yolk sac of RFC1-/- embryos, and cubilin protein is widely misexpressed. Inactivation of RFC1 impacts the expression of several ligands and interacting proteins in the cubilin-amnionless-megalin complex that are involved in the maternal-fetal transport of folate, vitamin B12, and other nutrients, lipids and morphogens required for normal embryogenesis. Comparison of RFC KO, wildtype normal embryos vs. RFC KO, nullizygous affected embryos Keywords: reduced folate carrier knockout, folate receptor, cubilin, megalin, embryos, gene expression, neural tube defect, chorioallantoic fusion
Project description:Presently, genes regulated by steroid hormones during induced regression of the CSL (cranial suspensory ligament) are unknown. To identify such genes and to evaluate their expression levels in megalin-deficient mice, we performed global gene expression profiling on gonads from E14.5 megalin+/+ and megalin-/- embryos.
Project description:Comparison of conserved TAD boundaries reveals that diverging CTCF sites is an evolutionary conserved signature associated with TAD borders 4C-seq samples for six gene family promoters in different samples: E9.5 and E14.5 mouse embryos ; 24hpf, 48hpf, 80%epiboly and Dome zebrafish embryos ; 48hpf S.purpuratus embryos
Project description:Transcriptional profiling of E9.5 mouse embryo tissue from the presomitic mesoderm (PSM) and somites I-IV. Tissue from embryos lacking a functional Paraxis gene (Paraxis-/-) was compared to identical tissue from E9.5 Wild Type embryos. The goal was to identify genes that had become deregulated in the absence of the transcription factor, Paraxis.
Project description:Purpose: The goal of this study is to identify the differential cardiac transcriptome profiling between WT and Smyd1 null (Smyd1-KO) hearts at E9.5 using RNA-seq. Methods: mRNA profiles of E9.5 WT and Smyd1-KO mouse hearts were generated by deep sequencing, n=3 for each genotype, using Illumina HiSeq2500. The sequence reads were aligned to the mm10 reference genome using STAR via the bcbio-nextgen RNA-sequencing pipeline. Differential gene expression was determined by DEseq2. Results: 1756 genes were differentially expressed between WT and Smyd1-KO hearts [adjusted P value <0.05, |log2(Fold Change)| > 0.5], with 1130 upregulated and 626 downregulated in E9.5 Smyd1-KO hearts.
Project description:GW182 (Tnrc6a) is a key component of RISC (miRNA-Induced Silencing Complex) that plays a critical role in miRNA-mediated gene silencing. Here, we show that GW182 is expressed in the yolk sac endoderm, and that gene-trap disruption of GW182 leads to growth arrest of yolk sac endoderm, impaired hematopoiesis and embryonic lethality. To investigate roles of GW182 in the yolk sac endoderm, we assessed changes in mRNA expression in the yolk sac of E9.5 GW182gt/gt embryos using microarrays (Affymetrix). Yolk sac of wild type littermates and GW182gt/gt embryos at E9.5 was collected for total RNA isolation using Trizol (Invitrogen). RNAs were purified according to the manufacturer’s protocol before subjected to Mouse Gene 1.0 ST Whole Genome Array (Affymetrix) for mRNA expression profiling. Experiments were performed in triplicate. Differentially expressed mRNAs were identified using a two-sample t-test (P<0.05 considered significant).
Project description:The endocytic receptor megalin constitutes the main pathway for clearance of plasma proteins from the glomerular filtrate in the proximal tubules. However, little is know about the mechanisms that control receptor activity. A widely discussed hypothesis states that the intracellular domain (ICD) of megalin, released upon ligand binding, acts as a transcription regulator to suppress receptor expression - a mechanism proposed to safeguard the proximal tubules from protein overload. Here, we have put this hypothesis to the test by generating a mouse model co-expressing the soluble ICD and the full-length receptor. Despite pronounced expression in the proximal tubules, the ICD failed to exert any effects on renal proximal tubular function such as megalin expression, protein retrieval, or renal gene transcription. Thus, our data argue that the ICD does not play a role in regulation of megalin activity in vivo in the proximal tubules. We used microarrays to compare gene expression profile in adult kidney from a new mouse model expressing the intracellular domain of megalin with wildtype. 10 week old mice were collected for RNA extraction and hybridization on Affymetrix microarrays. Three individuals for each genotype were analyzed comparing heterozygous animals for the intracellular domain of megalin with littermates controls.
Project description:TMT based quantification of protein abundance and phosphorylation state for developing mouse placenta. Timed-pregnant CD-1 mice were obtained from Charles Rivers Labs and dissected at e7.5 to extract the ectoplacental cones (EPCs) and at e9.5 to obtain the placenta as described by Martin and Cockroft (Martin, P.; Cockroft, D. L. Culture of Postimplantation Mouse Embryos). Staging of the mouse embryos was done according to Theiler criteria (Theiler, K. The House Mouse: Development and Normal Stages from Fertilization to 4 Weeks of Age; Springer-Verlag, 1972.)