Project description:To determine the transcriptomic changes of small-molecule-induced activation of ERBB4 in heart failure, we tested the effects of the two small molecules (NRG1 and EF-1) of ERBB4 agonists on iAM (immortalized atrial cardiomyocytes) model. The transcriptional profiles of mRNA in these samples will be measured with high throughput technology. Changes in transcriptional profiles between the activation of EF-1 and NRG1 will be compared.
Project description:To determine the transcriptomic changes of small-molecule-induced activation of ERBB4 in heart failure, we tested the effects of the two small molecules (NRG1 and EF-1) of ERBB4 agonists on the HCF (human cardiac fibroblasts) model. The transcriptional profiles of mRNA in these samples will be measured with high throughput technology. Changes in transcriptional profiles between the activation of EF-1 and NRG1 will be compared.
Project description:CD34+ stem cells have been used to treat the patients with heart failure, but the outcome is variable. It is of great significance to scrutinize the fate and the mechanism of CD34+ cell differentiation in vivo during heart failure and explore its intervention strategy.
Project description:Heart failure with preserved ejection fraction (HFpEF) poses therapeutic challenges due to the limited treatment options. Building upon our previous research that demonstrates the efficacy of histone deacetylase 6 (HDAC6) inhibition in a genetic cardiomyopathy model, we investigate HDAC6’s role in HFpEF due to their shared mechanisms of inflammation and metabolism. Here, we show that inhibiting HDAC6 with TYA-018 effectively reverses established heart failure and its associated symptoms in HFpEF mouse models. Additionally, in mice lacking the Hdac6 gene, HFpEF progression is delayed and they are resistant to TYA-018’s effects. The efficacy of TYA-018 is comparable to a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and their combination shows enhanced effects. Mechanistically, TYA-018 restores gene expression related to hypertrophy, fibrosis, and mitochondrial energy production in HFpEF heart tissues. Furthermore, TYA-018 also inhibits activation of human cardiac fibroblasts and enhances mitochondrial respiratory capacity in cardiomyocytes. In this work, our findings show that HDAC6 impacts heart pathophysiology and is a promising target for HFpEF treatment.
Project description:In current clinical practice care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown and thus corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms we show that heart failure leads to specific changes in hippocampal gene-expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.
Project description:In current clinical practice care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown and thus corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms we show that heart failure leads to specific changes in hippocampal gene-expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.