Project description:sRNA-seq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:Wheat seed germination is highly related to seedling survival rate and subsequent vegetative growth,and therefore directly affects the conformation of wheat yield and quality. So wheat seed germination is not only important to itself, but the whole human society. However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinese bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed germination. Seed germination involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed germination. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in five phases of wheat cultivar Jimai 20 seed germination. Our results provide a new insights into the thoroughly metabolic changes of seed germination as well as the relationship between some significant genes.
Project description:RNAseq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination.
Project description:Wheat seed germination directly affects wheat yield and quality. The wheat grains mainly include embryo and endosperm, and both play important roles in seed germination, seedling survival and subsequent vegetative growth. ABA can positively regulate dormancy induction and then negatively regulates seed germination at low concentrations. H2O2 treatment with low concentration can promote seed germination of cereal plants. Although various transcriptomics and proteomics approaches have been used to investigate the seed germination mechanisms and response to various abiotic stresses in different plant species, an integrative transcriptome analysis of wheat embryo and endosperm response to ABA and H2O2 stresses has not reported so far. We used the elite Chinese bread wheat cultivar Zhenmai 9023 as material and performed the first comparative transcriptome microarray analysis between embryo and endosperm response to ABA and H2O2 treatments during seed germination using the GeneChip® Wheat Genome Array Wheat seed germination includes a great amount of regulated genes which belong to many functional groups. ABA/H2O2 can repress/promote seed germination through coordinated regulating related genes expression. Our results provide new insights into the transcriptional regulation mechanisms of embryo and endosperm response to ABA and H2O2 treatments during seed germination
Project description:How epigenetics is involved in the transition from seed maturation to seed germination largely remains elusive. To uncover the possible role of epigenetics in gene expression during the transition from seed maturation to seed germination in soybean, the transcriptome of cotyledons from four stages of soybean seed maturation and germination, including mid-late maturation, late maturation, seed dormancy and seed germination, were profiled by Illumina sequencing. For the genes that are quantitatively regulated at the four stages, two antagonistic epigenetic marks, H3K4me3 and H3K27me3, together with the binding of RNA polymerase II, were investigated at the four stages by chromatin immunoprecipitation (ChIP). For 10 out of 16 genes examined, the relative enrichment of histone modification marks (H3K4me3 and H3K27me3) and RNA polymerase II binding on their promoter regions correlates well with their relative expression levels at four stages, suggesting the involvement of epigenetics in transcriptional regulation. A striking finding is that seed germination-specific genes start to show open chromatin (H3K4me3) during late seed maturation although their transcripts do not accumulate, which is further supported by RNA polymerase II binding. Together, our results provide the first evidence that seed germination genes can be primed for transcription (open chromatin and RNA polymerase II binding) during seed maturation, highlighting that the transition from seed maturation to seed germination starts at late seed maturation stages at both the genetic and epigenetic levels.
Project description:Rapid and uniform seed germination is required for modern cropping system. Thus, it is important to optimize germination performance through breeding strategies in maize, in which identification for key regulators is needed. Here, we characterized an AP2/ERF transcription factor, ZmEREB92, as a negative regulator of seed germination in maize. Enhanced germination in ereb92 mutants is contributed by elevated ethylene signaling and starch degradation. Consistently, an ethylene signaling gene ZmEIL7 and an α-amylase gene ZmAMYa2 are identified as direct targets repressed by ZmEREB92. OsERF74, the rice ortholog of ZmEREB92, shows conserved function in negatively regulating seed germination in rice. Importantly, this orthologous gene pair is likely experienced convergently selection during maize and rice domestication. Besides, mutation of ZmEREB92 and OsERF74 both lead to enhanced germination under cold condition, suggesting their regulation on seed germination might be coupled with temperature sensitivity. Collectively, our findings uncovered the ZmEREB92-mediated regulatory mechanism of seed germination in maize and provide breeding targets for maize and rice to optimize seed germination performance towards changing climates.
Project description:Seed germination is a complex trait determined by the interaction of hormonal, metabolic, genetic, and environmental components. Variability of this trait in crops has a big impact on seedling establishment and yield in the field. Classical studies of this trait in crops have focused mainly on the analyses of one level of regulation in the cascade of events leading to seed germination. We have carried out an integrative and extensive approach to deepen our understanding of seed germination in Brassica napus by generating transcriptomic, metabolic and hormonal data at different stages upon seed imbibition. Deep phenotyping of different seed germination associated traits in six winter-type B. napus accessions has revealed that seed germination kinetics, in particular seed germination speed, are major contributors to the variability of this trait. Metabolic profiling of these accessions has allowed us to describe a common pattern of metabolic change and to identify the levels of malate and aspartate metabolites as putative metabolic markers to estimate germination performance. Additionally, analysis of seed content of different hormones suggests that hormonal balance between ABA, GA and IAA at crucial time points during this process might underlie seed germination differences in these accessions. In this study, we have also defined the major transcriptome changes accompanying the germination process in B. napus. Furthermore, we have observed that earlier activation of key germination regulatory genes seems to generate the differences in germination speed observed between accessions in B. napus. Finally, we have found that protein-protein interactions between some of these key regulators are conserved in B. napus suggesting a shared regulatory network with other plants species. Altogether, our results provide a comprehensive and detailed picture of seed germination dynamics in oilseed rape. This new framework will be extremely valuable, not only to evaluate germination performance of B. napus accessions, but also to identify key targets for crop improvement in this important process.
Project description:Seed maturation, dormancy and germination are distinct physiological processes. Transition from maturation to dormancy, and from dormancy into germination are not only critical developmental phases in the plant life cycle but are also important agricultural traits. These developmental processes and their phase transitions are fine determined and coordinately regulated by genetic makeup and environmental cues. SCARECROW-LIKE15 (SCL15) has been demonstrated to be essential for repressing the seed maturation programme in vegetative tissues (Gao et al., Nat Commun, 2015, 6:7243). Here we report that SCL15 is also important for seed dormancy maintenance, germination timing and seed vigor performance based on the effects of SCL15 mutation on plant germination, growth and reproduction when compared with wild type Arabidopsis and over-expression lines 35S:SCL15 and Napin:SCL15. Seed dormancy is enhanced by the mutation of SCL15 in a GA signaling dependent way, indicating that SCL15 plays a negative role for primary dormancy release. Seed germination is positively regulated by SCL15 through interaction with ABA, GA and auxin signaling. SCL15 acts as positive regulator of seed vigor and effect of SCL15 mRNA abundance on seed reserve accumulation and seed development during late embryogenesis may contribute to the seed vigor performance.
Project description:In depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination. A previously unidentified transient expression pattern was identified for a group of genes, whereby a significant rise in abundance was observed at the end of stratification and significantly lower expression observed up to 6 hours later.