Project description:To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program. Experiment Overall Design: Arabidopsis thaliana rosettes from 4 week old plants at a time point four hours into the light-period were transfered to various "chilling" temperatures (20 [control], 17, 14, 12, 10 and 8°C] and harvested after 6 or 78 hours (both 10 hours into the light period). Experiment Overall Design: 6 continuous treatments X 2 timepoints X 2 replicates
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. In order to explore molecular basis of specific traits, we performed RNA-sequencing of vegetative rosettes from both species. Additionally, we sequenced apical meristems and inflorescences of A. lyrata that allow for intra-specific transcriptome comparison in several major developmental stages. Please view also related dataset GSE69077 (RNA-sequencing of heat stressed A. lyrata and A. thaliana plants).
Project description:To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program. Keywords: time course, different temperatures
Project description:In this study we analyzed the effect of overexpression of an HA-tagged version of the ERF RAP2.12 on the transcriptome levels in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes. We also analyzed the effect of a RAP2.12 and RAP2.2 simultaneous silencing in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes. We treated Arabidopsis Col-0 (wt) rosettes and transgenic HA::RAP2.12 and amiRAP2.2-12 , 5-week old, grown in 8/16 light/dark photoperiod with: -Control (22°C, dark, 21% O2, 1.5h). -Hypoxia (22°C, dark, 1% O2, 1.5h).
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. In order to explore molecular basis of specific traits, we performed RNA-sequencing of vegetative rosettes from both species. Additionally, we sequenced apical meristems and inflorescences of A. lyrata that allow for intra-specific transcriptome comparison in several major developmental stages. Arabidopsis lyrata and Arabidopsis thaliana aerial tissues were collected from mock treated plants, total RNA isolated and poly-A RNA populations sequenced