ABSTRACT: Bacterial skin colonization with Propionibacterium avidum as a risk factor for Periprosthetic Joint Infections - a single-center prospective study
Project description:In 21 patients undergoing revision arthroplasty due to septic or aseptic implant loosening, synovial fluid was collected intraoperatively after opening the joint capsule. In a proteomic MS approach, we wanted now to investigate these synovial fluids for novel proteogenic markers of periprosthetic infections.
Project description:Bacterial biofilm infections associated with wounded skin are prevalent, recalcitrant and in urgent need of treatments. Additionally, host responses in the skin to biofilm infections are not well understood. Here we employed a human organoid skin model to explore the transcriptomic changes of thermally-injured epidermis to Methicillin-resistant Staphylococcus aureus (MRSA) biofilm colonization. MRSA biofilm impaired skin barrier function, enhanced extracellular matrix remodelling, elicited inflammatory responses including IL-17, IL-12 family and IL-6 family interleukin signalling and modulated skin metabolism. Synthetic antibiofilm peptide DJK-5 effectively diminished MRSA biofilm associated with wounded human ex vivo skin. In the epidermis, DJK-5 shifted the overall skin transcriptome towards homeostasis including modulating the biofilm induced inflammatory response, promoting the skin DNA repair function, and downregulating MRSA invasion of thermally damaged skin. These data revealed the intrinsic promise of synthetic peptides in treating inflammation and biofilm infections.
Project description:USA300 Staphylococcus aureus is responsible for the current outbreak of skin abscesses in the United States. Unlike other USA types, USA300 colonizes the rectum at rates higher than the nose. The reason for the difference in colonization site preference may be related to specific adherence or attachment factors contained in the genome of these strains. Additional knowledge in this field may help design novel prophylactic and therapeutic strategies to combat staphylococcal infections. Strains of USA300 MSSA and MRSA colonizing the nose and/or rectum from children with staphylococcal skin abscesses were compared by whole genome array technology to identify bacterial genetic determinants associated with site-specific colonization. Strains isolated from different colonization sites were indistinguishable by genomic content. Site-specific colonization traits were not detected in the colonizing bacteria by this array. Either host characteristics associated with staphylococcal carriage or under represented bacterial genomic constructions need to be examined to determine the etiology of this site-specific colonization. Data is also available from <ahref=http://bugs.sgul.ac.uk/E-BUGS-102 target=_blank>BuG@Sbase</a>