Project description:Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.
2024-07-05 | GSE270023 | GEO
Project description:Marine Invasive Species Ireland
Project description:In fish, the sex determining mechanisms can broadly be classified as genotypic (GSD), temperature-dependent (TSD), or genotypic plus temperature effects (GSD+TE). For the fish species with TSD or GSD+TE, extremely high or low temperature can affect its sex determination and differentiation. For long time, the underlying changes in DNA methylation that occur during high or low temperature induced sex reversal have not been fully clarified. In this study, we used Nile tilapia as a model to perform a genome-wide survey of differences in DNA methylation in female and male gonads between control and high temperature induced groups using methylated DNA immunoprecipitation (MeDIP). We identified the high temperature induction-related differentially methylated regions (DMRs), and performed functional enrichment analysis for genes exhibiting DMR. These identified differentially methylated genes were potentially involved in the connection between environmental temperature and sex reversal in Nile tilapia. In this study, four samples (control females, CF; control males, CM; induced females, IF; induced males, IM) were analyzed.
Project description:Drought is a major limitation to the growth and productivity of trees in the ecologically and economically important genus Populus. The ability of Populus trees to contend with drought is a function of the responsiveness of their genome to this environmental insult, involving reconfiguration of the transcriptome to appropriately remodel growth, development and metabolism. The Populus drought transcriptome is shaped by interspecific genotypic variation, but the extent to which intraspecific variation shapes the drought transcriptome has not yet been examined. Here we test hypotheses aimed at examining the extent of intraspecific variation in the drought transcriptome. Transcriptome remodeling in response to water-deficit conditions was examined in six different Populus balsamifera L. genotypes using Affymetrix GeneChip technology. There were significant differences in the transcriptomes of the genotypes in response to water-deficit conditions; however, a common species-level response could also be identified across all individuals. Genotypes that had more similar drought-responsive transcriptomes also had fewer genotypic differences, as determined by microarray-derived single feature polymorphism (SFP) analysis, suggesting that responses may be conserved across individuals that share a greater degree of genotypic similarity. This work highlights the fact that a core species-level response can be defined; however, the underpinning genotype-derived complexities of the drought response in Populus must be taken into consideration when defining both species- and genus-level responses.
Project description:Environmental isolates of Vibrio cholerae from California coastal water compared to reference strain N16961. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: genotyping_design; array CGH
2007-07-17 | GSE8499 | GEO
Project description:Characterisation of novel endophytic bacterial species isolated from Alnus glutinosa
Project description:Drought is a major limitation to the growth and productivity of trees in the ecologically and economically important genus Populus. The ability of Populus trees to contend with drought is a function of the responsiveness of their genome to this environmental insult, involving reconfiguration of the transcriptome to appropriately remodel growth, development and metabolism. The Populus drought transcriptome is shaped by interspecific genotypic variation, but the extent to which intraspecific variation shapes the drought transcriptome has not yet been examined. Here we test hypotheses aimed at examining the extent of intraspecific variation in the drought transcriptome. Transcriptome remodeling in response to water-deficit conditions was examined in six different Populus balsamifera L. genotypes using Affymetrix GeneChip technology. There were significant differences in the transcriptomes of the genotypes in response to water-deficit conditions; however, a common species-level response could also be identified across all individuals. Genotypes that had more similar drought-responsive transcriptomes also had fewer genotypic differences, as determined by microarray-derived single feature polymorphism (SFP) analysis, suggesting that responses may be conserved across individuals that share a greater degree of genotypic similarity. This work highlights the fact that a core species-level response can be defined; however, the underpinning genotype-derived complexities of the drought response in Populus must be taken into consideration when defining both species- and genus-level responses. 72 arrays total. 6 genotypes, 2 time points. 2 water regimes. 3 biological replicates per treatment