Project description:In this study, to unravel the influence of phylogenetic divergence and biogeography in shaping the composition and activity of Daboia venoms, we comparatively investigated the venoms of D. russelii from western India and D. palaestinae from Israel.
Project description:Cefiderocol (CFDC) is a novel chlorocatechol-substituted siderophore approved to treat complicated urinary tract infections and for hospital-acquired and ventilator-acquired pneumonia. In previous work, human fluids, were shown to increase the minimum inhibitory concentration (MICs) of Acinetobacter baumannii against CFDC and reduce the expression of genes related to iron uptake systems, which could explain the need for higher concentrations of CFDC to exert inhibitory action. Herein, we analyzed the impact of human urine (HU), which contains low albumin concentrations, on the expression of iron-uptake related genes and MIC values of two carbapenem-resistant A. baumannii. Levels of resistance to CFDC were not modified by HU in strain AMA40 but were reduced in the case of strain AB5075. Testing other carbapenem-resistant A. baumannii isolates showed that the CFDC MICs were unmodified or reduced in the presence of HU. The expression of piuA, pirA, bauA, and bfnH determined by qRT-PCR was enhanced in both strains when HU was present in the culture medium. All four tested genes are involved in recognizing ferric siderophore complexes or internalization into the cell’s cytosol. In contrast, the effect of HU on genes associated with resistance to β-lactams, antibiotics commonly used to treat urinary tract infections caused by A. baumannii, was variable; the transcriptional analysis of pbp1, pbp3, blaOXA-51-like, blaADC, and blaNDM-1 showed significant variation. In summary, HU, probably due to the albumin and free iron content, does not adversely impact or slightly improves the activity of CFDC when tested against A. baumannii in urine in contrast to other human bodily fluids.
Project description:Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical, and cultural traditions1,2. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa, and Asia - in what is termed the Jewish Diaspora3-5. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people6. While many genetic studies have shed light on Jewish diseases and origins, including those focusing on uniparentally- and biparentally-inherited markers7-16, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbors have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities, and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not been previously reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and North Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight sub-cluster that overlies Druze and Cypriot samples, but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Bene Israel Indian Jews cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively; despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant. 466 samples are analysed on three different Illumina platforms.