Project description:Asthma and postinfectious bronchiolitis obliterans (PIBO) are chronic lung diseases characterized by recurrent episodes of wheezing. Mycoplasma, adenovirus, and respiratory syncytial virus infections can trigger both asthma and PIBO. These two diseases have common etiologic mechanisms that cause airway epithelial injury. They are often difficult to differentiate clinically in preschool children because both are exacerbated by viral infections and respond similarly to steroids and β2 agonists. PIBO, which is occasionally observed in children, is diagnosed through characteristic findings of air trapping on computed tomography or in biopsy samples of lung tissue. However, researchers have not clearly identified the specific blood markers that can distinguish these diseases or the differences in the mechanisms of development. We performed proteomic analysis of plasma to identify specific biomarkers that can be helpful in differentiating asthma from PIBO. This study discovered plasma biomarker candidates by measuring plasma proteome sequential window acquisition of all theoretical mass spectra (SWATH-MS) and included 30 healthy children, 18 with asthma and 15 with PIBO. was used to measure proteins in plasma samples. We identified and quantified 354 proteins across all 63 samples in the SWATH-MS analysis.
Project description:Background: Nasal epithelia are emerging as a proxy measure of gene expression of the airway epithelium in asthma. We hypothesized that epigenetic marks regulate gene expression of the nasal epithelia and consequently may provide a novel target for allergic asthma. Methods: We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma [N=36] versus healthy controls [N=36]. Results were validated in an independent population of asthmatics [N=30]. Results: We identified 186 genes with significant methylation changes, either as regions (differentially methylated regions [DMRs]) or single CpGs (differentially methylated probes [DMPs]) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. The methylation changes are large (median 9.5%, range: 2.6-29.5% methylation change) and similar in magnitude to those observed in malignancies. Hypo- and hyper-methylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. Conclusions: Our findings that epigenetic marks in respiratory epithelia are associated with allergic asthma in inner-city children provide new targets for biomarker development, and novel approaches to understanding disease pathogenesis. case control design with nasal epithelial cells from 36 atopic asthmatic and 36 nonatopic nonasthmatic children from the inner city
Project description:<p>The goal of the RSV Bronchiolitis in Early Life (RBEL) study is to determine how specific genetic, biologic, and immunologic characteristics interact to predispose individuals to develop asthma. Participants were carefully recruited by selecting a prospective cohort of 206 infants with severe respiratory syncytial virus (RSV) bronchiolitis who were at substantial risk of developing asthma.</p>
Project description:We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma versus healthy controls. We identified 119 differentially methylated regions (DMRs) and 118 differentially methylated probes (DMPs) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. Hypo- and hypermethylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. case control design with nasal epithelial cells from 36 atopic asthmatic and 33 nonatopic nonasthmatic children from the inner city
Project description:Background: Nasal epithelia are emerging as a proxy measure of gene expression of the airway epithelium in asthma. We hypothesized that epigenetic marks regulate gene expression of the nasal epithelia and consequently may provide a novel target for allergic asthma. Methods: We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma [N=36] versus healthy controls [N=36]. Results were validated in an independent population of asthmatics [N=30]. Results: We identified 186 genes with significant methylation changes, either as regions (differentially methylated regions [DMRs]) or single CpGs (differentially methylated probes [DMPs]) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. The methylation changes are large (median 9.5%, range: 2.6-29.5% methylation change) and similar in magnitude to those observed in malignancies. Hypo- and hyper-methylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. Conclusions: Our findings that epigenetic marks in respiratory epithelia are associated with allergic asthma in inner-city children provide new targets for biomarker development, and novel approaches to understanding disease pathogenesis.
Project description:We found that fuse ΔLMP1 to MAVS could strengthen MAVS mediated inhibition of PRRSV replication in MARC-145 cells. To better understand the biological function of the fusion protein ΔLMP1-MAVS, overall gene expression of MARC-145 cells transfected with ΔLMP1-MAVS or MAVS was evaluated by mRNA-seq. The result showed that ΔLMP1-MAVS upregulated a number of genes associated with innate immune responses to viral infection, including plenty of interferon-stimulated genes. This study provides reference date to research the working mechanism of ΔLMP1-MAVS.
Project description:We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma versus healthy controls. We identified 119 differentially methylated regions (DMRs) and 118 differentially methylated probes (DMPs) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. Hypo- and hypermethylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma.