Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:Microbially induced carbonate precipitation (MICP) refers to the biogeochemical process in which calcium carbonate is precipitated by altering the local geochemical environment (Mortensen et al. 2011). These alterations occur as a by-product of common microbial metabolic activities by increasing the local carbonate content as well as pH thereby saturating the solution in respect to carbonate. To better understand the microbial ecology of MICP on a community level in natural environments, we chose to evaluate microbial communities derived from travertine adjacent to Crystal Geyser (CG), Utah. CG is a cold-driven, CO2 rich geyser which is surrounded by colorful travertine that has been suggested to be generated through microbial processes. We used a cultivation-independent, multi-omics approach combined with geochemical measurements to investigate metabolic pathways and physiologies potentially involved in MICP at CG. We collected samples from the top 20 cm of travertine adjacent to Crystal Geyser, Utah in November 2019 and June 2021 (38.9384° N, 110.1354° W) wearing gloves at all times. We sampled 1 m away from the borehole (CG-1) and 10 m away from the borehole (CG-10). We preserved all collected samples in RNAlater-like solution (Menke et al., 2017, Front. Microbiol. 8) in a 1:10 sediment: RNAlater-like solution ratio as previously validated (Jensen et al. (2021, Micro. Spec. 2021, 9:2)
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in thehigh Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in the sub- Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in the low Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.
Project description:This experiment aims on the identification of serine hydrolases from a complex thermophile community that live in a hot vent in Kamchatka Peninsula based on in vivo labelling with FP-alkyne directly in the hot spring and subsequent analysis using metagenomics/metaproteomics. To this end, sediment samples were collected and treated using the following three conditions. DMSO- treated control FP-alkyne labelled Samples for each condition were prepared in triplicate, resulting a total number of 6 samples per spring. Labelling was performed using 4 µM of the probe FP-alkyne and incubation for 2 h in the hot spring.