Project description:adt04-03_fdh_drought - drought stress - What is the role of the mitochondrial formate dehydrogenase in the response to drought? - Wild type and mutant arabidopsis plants were grown in soil for 6 weeks under short days. Each lot of plants is shared into 2 groups, one of which was watered normally (arr) whislt the other half was not watered for a week (sech). Keywords: gene knock out,treated vs untreated comparison
Project description:Plants engineered for abiotic stress tolerance may soon be commercialized. The engineering of these plants typically involves the manipulation of complex multigene networks and may therefore have a greater potential to introduce pleiotropic effects than the simple monogenic traits that currently dominate the plant biotechnology market. Drought- tolerant Arabidopsis thaliana were engineered through overexpression of the transcription factor ABF3 in order to investigate unintended pleiotropic effects. In order to eliminate position effects, the Cre/lox recombination system was used to create control plant lines that contain identical T-DNA insertion sites but with the ABF3 transgene excised. This additionally allowed us to determine if Cre recombinase can cause unintended effects that impact the transcriptome. Microarray analysis of control plant lines that underwent Cre-mediated excision of the ABF3 transgene revealed only two genes that were differentially expressed in more than one plant line, suggesting that the impact of Cre recombinase on the transcriptome was minimal. In the absence of drought stress, overexpression of ABF3 had no effect on the transcriptome, but following drought stress, differences were observed in the gene expression patterns of plants overexpressing ABF3 relative to control plants. Examination of the functional distribution of the differentially expressed genes revealed strong similarity indicating that unintended pathways were not activated. In response to drought stress, overexpression of ABF3 results in a reprogramming of the drought response, which is characterized by changes in the timing or strength of expression of some drought response genes, without activating any unexpected gene networks. These results illustrate that important gene networks are highly regulated in Arabidopsis and that engineering stress tolerance may not necessarily cause extensive changes to the transcriptome.
Project description:Common and distinct transcriptomic responses to moderate light and drought stress in the different mutants. We used microarrays to analyse the response untreated and moderate light and drought stress in aox1a mutants, rpoTmp mutants and aox1a:rpoTmp double mutants. This was analysed in paralell with WT (Col0) plants in order to identify the responses to stress.
Project description:Expression analysis was performed with two TDNA insertion mutants of taf4b i.e; taf4bprm (TDNA insertion in promoter region) and taf4bint (TDNA insertion in intronic region), Taf4b overexpression lines, taf4bprmcpr5 double mutant lines (Double mutant was generated by crossing taf4bprm with cpr5) and Col-0 in normal condition as well as with taf4bprm mutant and Col-0 infected with fungi AB (Alternaria brassicicola) and bacteria ES4 (Pseudomonas syringae pv.maculicola ES4326 ) in different perspectives. Affymatrix expression analysis was executed to provide mechanistic details of regulation of genes by Taf4b in plants.