Project description:The human pathogen, Mycobacterium tuberculosis, develops a dormant infection, in which organisms survive within the body. We established a unique in vitro dormancy model based on the characterization of drug-resistance to INH and rifampin. M. tuberculosis cells were maintained in controlled and defined multiple stress conditions with low oxygen (5% dissolved oxygen tension), acid (pH 5.) along with glycerol-deprived medium conditions. To monitor gene expression changes in M. tuberculosis in response to the multiple stresses, we performed microarray analysis at the time point of 1, 2, 3, 6, and 12days after treatment. M. tuberculosis adapting to multiple stresses displayed characteristics associated with persistence in vivo, including entry into a non-replicative state and the repression of genes involved in energy regeneration. Under in vitro multiple-stresses, M. tuberculosis significantly modulated gene expression mainly in response to the starvation stresses. Cells exposed to these multiple stress conditions shows significant drug-resistance. Comparison with other in vivo expression profiles demonstrates induction of several common genes for in vitro dormancy conditions. Keywords: Stress response in time course.
Project description:The human pathogen, Mycobacterium tuberculosis, develops a dormant infection, in which organisms survive within the body. We established a unique in vitro dormancy model based on the characterization of drug-resistance to INH and rifampin. M. tuberculosis cells were maintained in controlled and defined multiple stress conditions with low oxygen (5% dissolved oxygen tension), acid (pH 5.) along with glycerol-deprived medium conditions. To monitor gene expression changes in M. tuberculosis in response to the multiple stresses, we performed microarray analysis at the time point of 1, 2, 3, 6, and 12days after treatment. M. tuberculosis adapting to multiple stresses displayed characteristics associated with persistence in vivo, including entry into a non-replicative state and the repression of genes involved in energy regeneration. Under in vitro multiple-stresses, M. tuberculosis significantly modulated gene expression mainly in response to the starvation stresses. Cells exposed to these multiple stress conditions shows significant drug-resistance. Comparison with other in vivo expression profiles demonstrates induction of several common genes for in vitro dormancy conditions. Keywords: Stress response in time course. Samples under multiple stress condition were taken at day 1, 2, 3, 6, and 12 for microarray hybridization. More than two technical replicates per biological samples with Cy3/5 dye-swaps.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Linezolid treated strains. Goal was to determine the effects of Linezolid against Mycobacterium tuberculosis H37Rv strains.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Lupulone treated strains. Goal was to determine the effects of Lupulone against Mycobacterium tuberculosis H37Rv strains.
Project description:The present study reports the gene expression data of Mycobacterium tuberculosis H37Rv and H37RvΔdosSΔdosT (DKO) grown on 0.2 % acetate/glucose under aerobic/hypoxic conditions. Acetate was reported to be present in granulomas of Mycobacterium tuberculosis infected guinea pigs which are also hypoxic. By exposing Mycobacterium tuberculosis H37Rv and H37RvΔdosSΔdosT to different combinations of granulomatous stresses (acetate/glucose and aerobic/hypoxic conditions) alongwith other experimental data, we were able to delineate a new signaling pathway that activates DevR (DosR) regulon through Acetyl phosphate. The presence of two pathways highlights the importance of targeting DevR and not DevS/DosT for intercepting DevRST signalling cascade.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Lupulone treated strains. Goal was to determine the effects of Lupulone against Mycobacterium tuberculosis H37Rv strains. Two-condition experiment,control DMSO treated strains vs. Lupulone treated strains. Biological replicates: 2 control replicates, 2 Lupulone replicates.
Project description:Transcriptional profiling of Mycobacterium tuberculosis H37Rv strains comparing control DMSO treated strains with Linezolid treated strains. Goal was to determine the effects of Linezolid against Mycobacterium tuberculosis H37Rv strains. Two-condition experiment,control DMSO treated strains vs. Linezolid treated strains. Biological replicates: 2 control replicates, 2 Linezolid replicates.
Project description:Transcriptional profiling of H37Rv (WT), Mut1 and Comp1 bacteria under aerobic (Aer/0 day, i.e 0 D) and hypoxic conditions (Hyp/5 days standing culture, i.e 5 D). Mut1: H37Rv carrying devR gene disruption by in frame insertion of kanamycin resistance cassette and expressing DevRN-Kan fusion protein. Comp1: Mut1 complemented with low copy number plasmid carrying devR gene expressed from its native constitutive upstream promoter. (Reference: Majumdar et al., 2010, PLoS One 5:e9448). Goal is to compare transcriptional patterns of WT, Mut1 and Comp1 strains under aerobic (0 D) and hypoxic (5 D) conditions in vitro. Two color and One-color experiments,Organism: Mycobacterium tuberculosis, Genotypic Technology designed Custom Mycobacterium tuberculosis H37Rv Whole Genome 8x15k GE Microarray (AMADID-020181)
Project description:Investigation of whole genome gene expression level changes in Mycobacterium tuberculosis treated with the DHFR inhibitor WR99210, compared to untreated cells. The antimycobacterial properties of WR99210 are further described in Gerum, A., Ulmer, J., Jacobus, D., Jensen, N., Sherman, D., and C. Sibley. 2002. Novel Saccharomyces cerevisiae screen identifies WR99210 analogues that inhibit Mycobacterium tuberculosis dihydrofolate reductase. Antimicrob Agents Chemother 46(11):3362-3369 [PMID:12384337]
Project description:Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and to get reactivated later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating bacteria that were made dormant employing Wayne’s dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis.