Project description:N6-methyladenosine (m6A) is the most prevalent internal modification found in mammalian messenger and non-coding RNAs. The discoveries of functionally significant demethylases that reverse this methylation as well as the recently revealed m6A distributions in mammalian transcriptomes strongly indicate regulatory functions of this modification. Here we report the identification and characterization of the mammalian nuclear RNA N6-adenosine methyltransferase core (RNMTC) complex. Besides METTL3, a methyltransferase which was the only known component of RNMTC in the past, we discovered that a previously uncharacterized methyltransferase, METTL14, exhibits a N6-adenosine methyltransferase activity higher than METTL3. Together with WTAP, the third component that dramatically affects the cellular m6A level, these three proteins form the core complex that orchestrates m6A deposition on mammalian nuclear RNA. Biochemistry assays, imaging experiments, as well as transcriptome-wide analyses of the binding sites and their effects on m6A methylation support methylation function and reveal new insights of RNMTC. PAR-CLIP and m6A-seq in HeLa cells
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:N6-methyladenosine (m6A) is the most prevalent internal modification found in mammalian messenger and non-coding RNAs. The discoveries of functionally significant demethylases that reverse this methylation as well as the recently revealed m6A distributions in mammalian transcriptomes strongly indicate regulatory functions of this modification. Here we report the identification and characterization of the mammalian nuclear RNA N6-adenosine methyltransferase core (RNMTC) complex. Besides METTL3, a methyltransferase which was the only known component of RNMTC in the past, we discovered that a previously uncharacterized methyltransferase, METTL14, exhibits a N6-adenosine methyltransferase activity higher than METTL3. Together with WTAP, the third component that dramatically affects the cellular m6A level, these three proteins form the core complex that orchestrates m6A deposition on mammalian nuclear RNA. Biochemistry assays, imaging experiments, as well as transcriptome-wide analyses of the binding sites and their effects on m6A methylation support methylation function and reveal new insights of RNMTC.
Project description:Methylation of N6-adenosine (me6A) has been observed in rRNA, tRNA, snoRNA, lncRNA and mRNA (ref.), but not yet miRNA. Interestingly, many mRNAs contain miRNA-binding sites and me6A in their 3'-UTR, although they do not appear to overlap (Mayer). We have investigated whether adenosine methylation affects miRNA levels and whether miRNAs are methylated. Indeed, we have obtained evidence suggesting that miRNA can be methylated and that the steady state level of certain miRNAs is affected by the level of the 6meA demethylase FTO.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes