Project description:N6-methyladenosine (m6A) is the most prevalent internal modification found in mammalian messenger and non-coding RNAs. The discoveries of functionally significant demethylases that reverse this methylation as well as the recently revealed m6A distributions in mammalian transcriptomes strongly indicate regulatory functions of this modification. Here we report the identification and characterization of the mammalian nuclear RNA N6-adenosine methyltransferase core (RNMTC) complex. Besides METTL3, a methyltransferase which was the only known component of RNMTC in the past, we discovered that a previously uncharacterized methyltransferase, METTL14, exhibits a N6-adenosine methyltransferase activity higher than METTL3. Together with WTAP, the third component that dramatically affects the cellular m6A level, these three proteins form the core complex that orchestrates m6A deposition on mammalian nuclear RNA. Biochemistry assays, imaging experiments, as well as transcriptome-wide analyses of the binding sites and their effects on m6A methylation support methylation function and reveal new insights of RNMTC. PAR-CLIP and m6A-seq in HeLa cells
Project description:Methylation of N6-adenosine (me6A) has been observed in rRNA, tRNA, snoRNA, lncRNA and mRNA (ref.), but not yet miRNA. Interestingly, many mRNAs contain miRNA-binding sites and me6A in their 3'-UTR, although they do not appear to overlap (Mayer). We have investigated whether adenosine methylation affects miRNA levels and whether miRNAs are methylated. Indeed, we have obtained evidence suggesting that miRNA can be methylated and that the steady state level of certain miRNAs is affected by the level of the 6meA demethylase FTO.
Project description:N6-methyladenosine (m6A) is the most prevalent internal modification found in mammalian messenger and non-coding RNAs. The discoveries of functionally significant demethylases that reverse this methylation as well as the recently revealed m6A distributions in mammalian transcriptomes strongly indicate regulatory functions of this modification. Here we report the identification and characterization of the mammalian nuclear RNA N6-adenosine methyltransferase core (RNMTC) complex. Besides METTL3, a methyltransferase which was the only known component of RNMTC in the past, we discovered that a previously uncharacterized methyltransferase, METTL14, exhibits a N6-adenosine methyltransferase activity higher than METTL3. Together with WTAP, the third component that dramatically affects the cellular m6A level, these three proteins form the core complex that orchestrates m6A deposition on mammalian nuclear RNA. Biochemistry assays, imaging experiments, as well as transcriptome-wide analyses of the binding sites and their effects on m6A methylation support methylation function and reveal new insights of RNMTC.
Project description:N6-methyladenosine (m6A), a major modification of messenger RNAs (mRNAs), plays critical roles in RNA metabolism and function. In addition to the internal m6A, N6, 2'-O-dimethyladenosine (m6Am) is present at the transcription start nucleotide of capped mRNAs in vertebrates. However, its biogenesis and functional role remain elusive. Using a reverse genetics approach, we identified PCIF1, a factor that interacts with the serine-5-phosphorylated carboxyl-terminal domain of RNA polymerase II, as a cap-specific adenosine methyltransferase (CAPAM) responsible for N6-methylation of m6Am. The crystal structure of CAPAM in complex with substrates revealed the molecular basis of cap-specific m6A formation. A transcriptome-wide analysis revealed that N6-methylation of m6Am promotes the translation of capped mRNAs. Thus, a cap-specific m6A writer promotes translation of mRNAs starting from m6Am.
Project description:It has widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes, whereas the other forms, such as N6-methyladenine, primarily exist in prokaryotes and only a few eukaryotes. Herein, we demonstrated the surprising presence of N6-methyladenine in mammalian genomes, especially, mouse embryonic stem cells. This modification is enriched at histone variant H2A.X-deposited genomic regions in wild type embryonic stem cells. Our work also showed that a previously unknown DNA demethylase, Alkbh1, is the major demethylase for N6-methyladenine in embryonic stem cells. Increase of N6-methyladenine levels in Alkbh1 deficient cells leads to silencing of genes that regulate embryonic development. Surprisingly, genes located on the X-chromosome, but not the Y-chromosome or autosomes are preferentially silenced by N6-methyladenine. Strikingly, N6-methyladenine in Alkbh1 deficient cells are specifically deposition at young, full-length subfamilies of LINE1 transposons that are strongly enriched on the X chromosome. Furthermore, N6-methyladenine deposition on LINE1s pattern is inversely correlated with their evolutionary age. The deposition of N6-methyladenine results in epigenetic silencing of such L1s, which are otherwise actively transcribed in wild type embryonic stem cells, and the neighboring enhancers and genes. Furthermore, N6-methyladenine induced-silencing resists gene activation signals during embryonic stem cell differentiation. Thus, N6-methyladenine adopts a new function in epigenetic silencing in evolution, distinct from its role in gene activation in other organisms. In summary, our results demonstrate that N6-methyladenine unexpectedly constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. First, we used different histone antibodies to enrich for DNA molecules with histone modification or specific variant in mouse ESCs as previously described Native-ChIP methods. Then, co-purified DNA molecules from WT or KO ESCs were subject to HiSeq2000 sequencing and data analysis for histone modification or variant peaks. Native ChIP coupling with HiSeq sequencing
Project description:It has widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes, whereas the other forms, such as N6-methyladenine, primarily exist in prokaryotes and only a few eukaryotes. Herein, we demonstrated the surprising presence of N6-methyladenine in mammalian genomes, especially, mouse embryonic stem cells. This modification is enriched at histone variant H2A.X-deposited genomic regions in wild type embryonic stem cells. Our work also showed that a previously unknown DNA demethylase, Alkbh1, is the major demethylase for N6-methyladenine in embryonic stem cells. Increase of N6-methyladenine levels in Alkbh1 deficient cells leads to silencing of genes that regulate embryonic development. Surprisingly, genes located on the X-chromosome, but not the Y-chromosome or autosomes are preferentially silenced by N6-methyladenine. Strikingly, N6-methyladenine in Alkbh1 deficient cells are specifically deposition at young, full-length subfamilies of LINE1 transposons that are strongly enriched on the X chromosome. Furthermore, N6-methyladenine deposition on LINE1s pattern is inversely correlated with their evolutionary age. The deposition of N6-methyladenine results in epigenetic silencing of such L1s, which are otherwise actively transcribed in wild type embryonic stem cells, and the neighboring enhancers and genes. Furthermore, N6-methyladenine induced-silencing resists gene activation signals during embryonic stem cell differentiation. Thus, N6-methyladenine adopts a new function in epigenetic silencing in evolution, distinct from its role in gene activation in other organisms. In summary, our results demonstrate that N6-methyladenine unexpectedly constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. First, we used N6mA or 5mC antibody to enrich for DNA molecules with DNA modification in mouse ESCs as previously described methods. Then, co-purified DNA molecules from WT or KO ESCs were subject to HiSeq2000 sequencing and data analysis for DNA modification sites. DNA IP coupling with HiSeq sequencing
Project description:It has widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes, whereas the other forms, such as N6-methyladenine, primarily exist in prokaryotes and only a few eukaryotes. Herein, we demonstrated the surprising presence of N6-methyladenine in mammalian genomes, especially, mouse embryonic stem cells. This modification is enriched at histone variant H2A.X-deposited genomic regions in wild type embryonic stem cells. Our work also showed that a previously unknown DNA demethylase, Alkbh1, is the major demethylase for N6-methyladenine in embryonic stem cells. Increase of N6-methyladenine levels in Alkbh1 deficient cells leads to silencing of genes that regulate embryonic development. Surprisingly, genes located on the X-chromosome, but not the Y-chromosome or autosomes are preferentially silenced by N6-methyladenine. Strikingly, N6-methyladenine in Alkbh1 deficient cells are specifically deposition at young, full-length subfamilies of LINE1 transposons that are strongly enriched on the X chromosome. Furthermore, N6-methyladenine deposition on LINE1s pattern is inversely correlated with their evolutionary age. The deposition of N6-methyladenine results in epigenetic silencing of such L1s, which are otherwise actively transcribed in wild type embryonic stem cells, and the neighboring enhancers and genes. Furthermore, N6-methyladenine induced-silencing resists gene activation signals during embryonic stem cell differentiation. Thus, N6-methyladenine adopts a new function in epigenetic silencing in evolution, distinct from its role in gene activation in other organisms. In summary, our results demonstrate that N6-methyladenine unexpectedly constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. First, we used a native-ChIP approach to enrich for DNA molecules residing in H2A.X-deposition regions in mouse ESCs as previously described. Then, co-purified DNA molecules from WT or KO ESCs were subject to SMRT sequencing and data analysis for DNA modifications (Pacific Biosciences). H2A.X Native ChIP coupling with SMRT sequencing (separate the short "S" and long "L" part to sequencing)