Project description:Lipids play an important role in coffee bean development, coffee brew and in the effects of coffee on human health. They account for around 17% of the dry bean weight and encompass different classes and subclasses, mostly triacylglycerols (TAG) and a minor quantity of phospholipids (PL) and βN-alkanoyl-5-hydroxytryptamides (C-5HT). To comprehensive profile these different lipids, it is important to evaluate extraction methods that provide high lipid coverage and to analyze the lipids in high-resolution techniques. In this work, liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) was employed to comprehensive profile lipids from green Arabica coffee beans and to evaluate the extraction efficiency and lipid coverage of three methods: Bligh-Dyer (BD), Folch (FO), and Matyash (MA). The MA method yielded the greatest number of annotated compounds (131 lipids) compared to the other methods. In the positive electrospray ionization (ESI) mode, the main difference among extraction methods was observed for TAG and diacylglycerols, whereas for the negative ESI it was observed differences for phosphatidylinositol (PI), lysophosphatidylinositol and phosphatidic acid (p < 0.05). The analysis of coffees from different maturation stages and/or post-harvest processes were also performed using the MA method. Immature beans were discriminated from mature and overripe beans by its lower levels of C-5HT, PI, phosphatidylcholine, lysophosphatidylcholine, phosphatidyletanolamine, and lysophosphatidylethanolamine. These results can help to better understand the coffee lipid composition and its association with coffee quality.
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360 Keywords: ordered
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360
Project description:Background: Understanding the genetic elements that contribute to key aspects of coffee biology will impact future agronomical improvements for this economically important tree. The past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results: The project PUCE CAFE, set up by the scientific consortium NESTLE/IRD/CIRAD has developed of long oligonucleotide coffee array using public coffee EST sequences mainly obtained from different stages during fruit development and leaves in Coffea canephora (Robusta). We have performed a validation experiment in order to check the array usability and the reproducibility of hybridizations. Conclusion: We have generated the first 15K Coffee array during this three years project PUCE CAFE, granted by The French National Research Agency (ANR, Programme Génoplante) . This new tool was dedicated to large scale transcriptomic analysis during grain development of Coffea canephora grown in different countries . Furthermore, other analysis have been also initiated by the different partners like analysis of polyploidy or drought resistance. In any case, at the end of the project, the generated arrays will be available to the international scientific community. three biological replicates were made for each tissue analyzed (i.e. leaves, flowers and mature beans). The following comparisons were made: Bean-Flower, Leaf-Flower and Leaf-Bean. In all, we performed microarray analyses on 18 slides [3 (replicates) x 2 (dyes) x 3 (organs)]
Project description:Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.
Project description:The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays.
Project description:With the aid of a biochip, carrying representative sequences from approximately 2200 sequences from the genome of isolate 9a5c from X. fastidiosa (Xf), microarray-based comparisons have been performed with 8 different Xf isolates obtained from coffee plants.
Project description:The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. Briefly, 7-week-old male C57BL/6J mice purchased from Charles River Laboratories Japan (Yokohama) were divided into the following five groups. The normal diet group (ND group) was fed D12450B (10 kcal% fat, Research Diets, New Brunswick, NJ, USA). The high-fat diet group (HF group) was fed D12492 (60 kcal% fat, Research Diets, New Brunswick, NJ, USA). The caffeinated coffee group (HFCC group) was fed a high-fat diet containing 2% caffeinated freeze-dried coffee. The decaffeinated coffee group (HFDC group) was fed a high-fat diet containing 2% decaffeinated freeze-dried coffee. The green unroasted coffee group (HFGC group) was fed a high-fat diet containing 2% unroasted caffeinated freeze-dried coffee. The mice had ad libitum access to their diets and drinking water. After 9 weeks, mice were sacrificed and the livers were subjected to the Affymrtix DNA microarray experiment.