Project description:Affymetrix GeneChip Human Gene 1.0 ST Array was applied to compare the expression profiles in peripheral blood mononuclear cells(PBMC) between healthy controls and multiple sclerosis patients(MS pt). It suggested that certain genes involved in apoptosis pathway have been changed regulated in PBMC from MS pt. Applying Affymetrix GeneChip Human Gene 1.0 ST Array and the mixed effects model for gene set analysis, we compared gene expression profiles between 8 multiple sclerosis (MS) patients and 4 healthy controls (HC).
Project description:This study aims to understand the systemic component of psoriasis pathogenesis since psoriasis patients have higher risk of developing diesases beyond skin inflammation. In this study, we collected sigmoidal gut biopsies to profile host transcriptomic changes associated with psoriasis patients and healthy subjects. This exepriment provided transcriptomic dataset of host response and is integrated with fecal metagenomic data and flow cytometry dataset as part of the multi-omic study.
2020-06-30 | GSE150851 | GEO
Project description:Stool shotgun metagenomic profiles CRC patients and healthy controls - TU cohort
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Patient with multiple sclerosis improves during pregnancy while temporarily worsening post-partum. The reasons behind the disease modulation during pregnancy remain unknown. In this study, we have investigated the effect of pregnancy on circulating CD4+ and CD8+ T cells from patients with multiple sclerosis and healthy controls to gain a deeper understanding why patients with multiple sclerosis improves during pregnancy. We assessed transcriptomics in CD4+ and CD8+ T cells obtained during (1st, 2nd and 3rd trimester) and after pregnancy (6 weeks post-partum), using the RNA-seq.
Project description:Patient with multiple sclerosis improves during pregnancy while temporarily worsening post-partum. The reasons behind the disease modulation during pregnancy remain unknown. In this study, we have investigated the effect of pregnancy on circulating CD4+ and CD8+ T cells from patients with multiple sclerosis and healthy controls to gain a deeper understanding why patients with multiple sclerosis improves during pregnancy. We assessed epigenome-wide DNA methylation in CD4+ and CD8+ T cells obtained during (1st, 2nd and 3rd trimester) and after pregnancy (6 weeks post-partum), using the Infinium MethylationEPIC 850K array.