Project description:Diachasmimorpha longicaudata parasitoid wasps carry a symbiotic poxvirus, known as DlEPV, within the female wasp venom gland. We sequenced RNA from venom gland tissue to identify DlEPV orthologs for 3 conserved poxvirus core genes. The DlEPV ORFs identified from this transcriptome were used to design primers for downstream RT-qPCR analysis and RNAi knockdown experiments.
Project description:Parasitoid wasps of the species Diachasmimorpha longicaudata are associated with a heritable poxvirus, known as DlEPV, that is stored in the venom gland of adult female wasps and transferred to tephritid fly hosts of the wasps during oviposition. We conducted a RNA-seq differential expression analysis to gain insight on how DlEPV can replicate in both wasps and their fly hosts but only cause pathogenic effects during replication in flies. Our analysis revealed that 91.2% (176 of 193) of DlEPV genes showed significant differential expression during peak virus replication in wasp venom glands compared to parasitized flies. Over 80% of DlEPV replication genes were significantly upregulated in wasps, while 79% of DlEPV putative virulence genes were significantly upregulated in fly hosts. These data therefore support a dichotomy of viral function, where virus replication is promoted in wasp tissue and virulence in host tissue. Such a division of viral activity could represent an important adaptation to maintain a stable symbiosis between this virus and its associated parasitoid.
Project description:Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize within one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. D. longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural systems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to virus infection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Further investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared to the permissive species, indicating that the host range of the viral symbiont may dictate the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.
Project description:Venoms are biochemical arsenals that have emerged in numerous animal lineages, where they have coevolved with morphological and behavioural traits for venom production and delivery. In centipedes, venom evolution is thought to be constrained by the morphological complexity of their venom glands due to physiological limitations on the number of toxins produced by their secretory cells. Here, we show that the uneven toxin expression that results from these limitations have enabled giant centipedes to regulate the composition of their secreted venom despite having morphologically undifferentiated venom glands. We show that this control is likely achieved by the complex neuronal networks that innervate each venom gland subunit and is facilitated by morphological adaptations that circumvent the physiological evolutionary constraints on venom production. Our results suggest behavioural control over venom composition may be an overlooked aspect of venom biology and provide an example of how exaptation can facilitate evolutionary innovation and novelty.
Project description:The Tibellus genus spider is an active hunter that does not spin webs and remains highly underinvestigated in terms of the venom composition. Here, we present a combination of venom glands transcriptome cDNA analysis, venom proteome analysis for unveiling of the Tibellus genus spider venom composition.
Project description:High-throughput sequencing of RNA from secretory tissues of reptiles.Tissues were dissected from freshly-euthanised individuals and either snap-frozenin liquid nitrogen or stored short-term in RNAlater (Ambion). Total RNA was extracted from approximately 30mg of tissue using the Qiagen RNeasy Mini kit according to manufacturer instructions, with on-column DNase treatment. Typically, single whole scent glands and venom/salivary glands were used in the relevant extractions and skin samples were taken from the dorsal side at approximately mid-body level.This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/