Project description:Blood cell counts often fail to report on immune processes occurring in remote tissues. Here we use 25 immune cell type-specific methylation patterns in circulating cell-free DNA (cfDNA) for studying 26 human immune cell dynamics. We characterized cfDNA released from specific immune cell types in 27 healthy individuals (N=242), cross sectionally and longitudinally. Immune cfDNA levels had no 28 individual steady state as opposed to blood cell counts, suggesting that cfDNA concentration reflects 29 adjustment of cell survival to maintain homeostatic cell numbers. We also observed selective elevation 30 of immune-derived cfDNA upon perturbations of immune homeostasis. Following influenza 31 vaccination (N=92), B-cell-derived cfDNA levels increased prior to elevated B-cell counts and 32 predicted efficacy of antibody production. Patients with Eosinophilic Esophagitis (N=21) and B-cell 33 lymphoma (N=27) showed selective elevation of eosinophil and B-cell cfDNA respectively, which 34 were undetectable by cell counts in blood. Immune-derived cfDNA provides a novel biomarker for 35 monitoring immune responses to physiological and pathological processes that are not accessible using 36 conventional methods.
Project description:Nucleosomes are the basic unit of packaging of eukaryotic chromatin, and nucleosome positioning can differ substantially between cell types. Here, we sequence 14.5 billion plasma-borne cell-free DNA (cfDNA) fragments (700-fold coverage) to generate genome-wide maps of in vivo nucleosome occupancy. We identify 13 million local maxima of nucleosome protection, spanning 2.53 gigabases (Gb) of the human genome, whose positions and spacings correlate with nuclear architecture, gene structure and gene expression. We further show that short cfDNA fragments - poorly recovered by standard protocols - directly footprint the in vivo occupancy of DNA-bound transcription factors such as CTCF. The sequence composition of cfDNA has previously been used to noninvasively monitor cancer, pregnancy and organ transplantation, but a key limitation of this paradigm is its dependence on genotypic differences to distinguish between contributing tissues. We show that nucleosome spacing in gene bodies and cis-regulatory elements, inferred from cfDNA in healthy individuals, correlates most strongly with transcriptional and epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the normal source of cfDNA. We build on this observation to show how in vivo nucleosome footprints can be used to infer the cell types that contribute to circulating cfDNA in pathological states such as cancer. Because it does not rely on genotypic differences, this strategy may enable the noninvasive cfDNA-based monitoring of a much broader set of clinical conditions than is currently possible. Sequencing of cfDNA libraries from healthy individuals, pooled healthy individuals and individuals with disease for the identification of nucleosomes and protection from other DNA binding proteins.
Project description:We performed all stimulatory experiments using THP1 cell line as a representative of primary human monocytes to show fundamental role of the cfDNA in healthy organisms. The experiments were conducted in duplicates using plasma containing cfDNA (NP) and the reference one with cfDNA removed by DNase (TP) to recognize unequivocally the effect of plasma cfDNA on transcriptome and proteome of monocytes. We used native human plasma samples obtained from healthy volunteers with no animal serum addition to cultivation medium in order to avoid the presence of uncharacterized animal cfDNA in the experiments.
Project description:As a non-invasive blood testing, the detection of cell-free DNA (cfDNA) methylation in plasma is raising increasing interest due to its diagnostic and biology applications. Although extensively used in cfDNA methylation analysis, bisulfite sequencing is less cost-effective. Through enriching methylated cfDNA fragments with MeDIP followed by deep sequencing, we aimed to characterize cfDNA methylome in cancer patients. In this study, we investigated the cfDNA methylation patterns in lung cancer patients by MeDIP-seq. MEDIPS package was used for the identification of differentially methylated regions (DMRs) between patients and normal ones. Overall, we identified 330 differentially methylated regions (DMRs) in gene promoter regions, 33 hypermethylation and 297 hypomethylation respectively, by comparing lung cancer patients and healthy individuals as controls. The 33 hypermethylation regions represent 32 genes. Some of the genes had been previously reported to be associated with lung cancers, such as GAS7, AQP10, HLF, CHRNA9 and HOPX. Taken together, our study provided an alternative method of cfDNA methylation analysis in lung cancer patients with potential clinical applications.
Project description:Sampling the live brain is difficult and dangerous, and withdrawing cerebrospinal fluid is uncomfortable and frightening to the subject, so new sources of real-time analysis are constantly sought. Cell-free DNA (cfDNA) derived from glia and neurons offers the potential for wide-ranging neurological disease diagnosis and monitoring. However, new laboratory and bioinformatic strategies are needed. DNA methylation patterns on individual cfDNA fragments can be used to ascribe their cell-of-origin. Here we describe bisulfite sequencing assays and bioinformatic processing methods to identify cfDNA derived from glia and neurons. In proof-of-concept experiments we describe the presence of both glia- and neuron-cfDNA in the blood plasma of human subjects following mild trauma. These detection of glia- and neuron-cfDNA represents a significant step forward in the translation of liquid biopsies for neurological diseases.
Project description:We report that blood cell-free DNA as a promising biomarker for the diagnosis of sepsis and for the prediction of 28-day mortality of ICU patients by integrating both human and microbial cfDNA components.
Project description:The early detection of tissue and organ damage associated with autoimmune diseases (AID) has been identified as key to improve long-term survival, but non-invasive biomarkers are lacking. Elevated cell-free DNA (cfDNA) levels have been observed in AID and inflammatory bowel disease (IBD), prompting interest to use cfDNA as a potential non-invasive diagnostic and prognostic biomarker. Despite these known disease-related changes in concentration, it remains impossible to identify AID and IBD patients through cfDNA analysis alone. By using unsupervised clustering on large sets of shallow whole-genome sequencing (sWGS) cfDNA data, we uncover AID- and IBD-specific genome-wide patterns in plasma cfDNA in both the obstetric and general AID and IBD populations. Supervised learning of the genome-wide patterns allows AID prediction with 50% sensitivity at 95% specificity. Importantly, the method can identify pregnant women with AID during routine non-invasive prenatal screening. Since AID pregnancies have an increased risk of severe complications, early recognition or detection of new onset AID can redirect pregnancy management and limit potential adverse events. This method opens up new avenues for screening, diagnosis and monitoring of AID and IBD.
Project description:Current methods for mapping the tissue-of-origin of circulating cell-free DNA (cfDNA) are still insufficient. Here, we have extended a previously developed methylated CpG tandems amplification and sequencing (MCTA-Seq) method for quantitative analysis of tissue-of-origin of plasma cfDNA. By comparing paired plasma cfDNA and white blood cell genomic DNA, we have demonstrated that the liver is the major non-hematopoietic tissue contributing to plasma cfDNA in healthy adults, accounting for approximately 2%. Furthermore, we have detected changes in liver-derived DNA in patients with benign liver diseases and increases in pancreas-derived DNA in acute pancreatitis patients. Interestingly, our results suggest that DNA derived from pathological tissues makes a minor contribution to the increased cfDNA in many clinical cases. Finally, we have identified a tissue-specific hypermethylated cfDNA marker located in the intragenic regions of tissue-specifichighlyexpressed genes. This study represents valuable progress in the field of cfDNA and offers promise for clinical research and medical diagnostics using the described method.